L(s) = 1 | + (−7.85 + 13.5i)2-s + (−6.13 + 46.3i)3-s + (−59.2 − 102. i)4-s + (−213. − 370. i)5-s + (−582. − 447. i)6-s + (−171.5 + 297. i)7-s − 148.·8-s + (−2.11e3 − 568. i)9-s + 6.71e3·10-s + (1.55e3 − 2.68e3i)11-s + (5.12e3 − 2.11e3i)12-s + (3.65e3 + 6.32e3i)13-s + (−2.69e3 − 4.66e3i)14-s + (1.84e4 − 7.64e3i)15-s + (8.75e3 − 1.51e4i)16-s + 2.24e4·17-s + ⋯ |
L(s) = 1 | + (−0.693 + 1.20i)2-s + (−0.131 + 0.991i)3-s + (−0.463 − 0.802i)4-s + (−0.765 − 1.32i)5-s + (−1.10 − 0.845i)6-s + (−0.188 + 0.327i)7-s − 0.102·8-s + (−0.965 − 0.259i)9-s + 2.12·10-s + (0.351 − 0.608i)11-s + (0.856 − 0.353i)12-s + (0.461 + 0.798i)13-s + (−0.262 − 0.454i)14-s + (1.41 − 0.584i)15-s + (0.534 − 0.925i)16-s + 1.10·17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(0.423−0.905i)Λ(8−s)
Λ(s)=(=(63s/2ΓC(s+7/2)L(s)(0.423−0.905i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
0.423−0.905i
|
Analytic conductor: |
19.6802 |
Root analytic conductor: |
4.43624 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :7/2), 0.423−0.905i)
|
Particular Values
L(4) |
≈ |
0.641114+0.407889i |
L(21) |
≈ |
0.641114+0.407889i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(6.13−46.3i)T |
| 7 | 1+(171.5−297.i)T |
good | 2 | 1+(7.85−13.5i)T+(−64−110.i)T2 |
| 5 | 1+(213.+370.i)T+(−3.90e4+6.76e4i)T2 |
| 11 | 1+(−1.55e3+2.68e3i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(−3.65e3−6.32e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1−2.24e4T+4.10e8T2 |
| 19 | 1+4.75e4T+8.93e8T2 |
| 23 | 1+(−2.14e4−3.71e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(−7.41e4+1.28e5i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+(−3.59e4−6.22e4i)T+(−1.37e10+2.38e10i)T2 |
| 37 | 1+2.48e5T+9.49e10T2 |
| 41 | 1+(−1.90e5−3.29e5i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+(3.22e4−5.59e4i)T+(−1.35e11−2.35e11i)T2 |
| 47 | 1+(−3.86e5+6.68e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1−6.93e5T+1.17e12T2 |
| 59 | 1+(1.14e6+1.99e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(−1.54e6+2.67e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(−1.36e6−2.35e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1−3.24e6T+9.09e12T2 |
| 73 | 1−5.42e6T+1.10e13T2 |
| 79 | 1+(7.25e5−1.25e6i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+(2.46e6−4.26e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1−5.52e5T+4.42e13T2 |
| 97 | 1+(−7.76e6+1.34e7i)T+(−4.03e13−6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.17940397535432725663875754060, −12.41518701947418602156452822428, −11.42241597544030567123126657915, −9.698341861012721954357240099294, −8.721264227433734350372468261148, −8.226748408399471514994570899158, −6.35698095685786821724674642136, −5.15667453747335591999756538708, −3.78149014840310515361297115428, −0.53282401839442933872041393357,
0.829142372437698776376442125492, 2.42423941331436471406450847910, 3.53341653079962753662446002230, 6.30419446794609144971303479569, 7.41677535127220358480670322517, 8.599702802088363989684613481132, 10.39733160197207376306932462389, 10.86948614780426279804254799871, 12.04507330295961371814585592729, 12.74698334928923098933639563929