L(s) = 1 | + (−7.72 + 13.3i)2-s + (11.6 − 45.2i)3-s + (−55.3 − 95.8i)4-s + (15.6 + 27.0i)5-s + (516. + 505. i)6-s + (−171.5 + 297. i)7-s − 267.·8-s + (−1.91e3 − 1.05e3i)9-s − 483.·10-s + (337. − 585. i)11-s + (−4.98e3 + 1.39e3i)12-s + (1.48e3 + 2.57e3i)13-s + (−2.64e3 − 4.58e3i)14-s + (1.40e3 − 393. i)15-s + (9.15e3 − 1.58e4i)16-s + 1.32e4·17-s + ⋯ |
L(s) = 1 | + (−0.682 + 1.18i)2-s + (0.248 − 0.968i)3-s + (−0.432 − 0.748i)4-s + (0.0559 + 0.0969i)5-s + (0.975 + 0.955i)6-s + (−0.188 + 0.327i)7-s − 0.185·8-s + (−0.876 − 0.481i)9-s − 0.152·10-s + (0.0765 − 0.132i)11-s + (−0.832 + 0.232i)12-s + (0.187 + 0.325i)13-s + (−0.258 − 0.446i)14-s + (0.107 − 0.0301i)15-s + (0.558 − 0.967i)16-s + 0.653·17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(0.626−0.779i)Λ(8−s)
Λ(s)=(=(63s/2ΓC(s+7/2)L(s)(0.626−0.779i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
0.626−0.779i
|
Analytic conductor: |
19.6802 |
Root analytic conductor: |
4.43624 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :7/2), 0.626−0.779i)
|
Particular Values
L(4) |
≈ |
1.18831+0.569470i |
L(21) |
≈ |
1.18831+0.569470i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−11.6+45.2i)T |
| 7 | 1+(171.5−297.i)T |
good | 2 | 1+(7.72−13.3i)T+(−64−110.i)T2 |
| 5 | 1+(−15.6−27.0i)T+(−3.90e4+6.76e4i)T2 |
| 11 | 1+(−337.+585.i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(−1.48e3−2.57e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1−1.32e4T+4.10e8T2 |
| 19 | 1−4.03e4T+8.93e8T2 |
| 23 | 1+(−1.40e3−2.42e3i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(5.03e4−8.71e4i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+(−7.03e4−1.21e5i)T+(−1.37e10+2.38e10i)T2 |
| 37 | 1−4.52e5T+9.49e10T2 |
| 41 | 1+(−3.45e5−5.98e5i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+(−1.67e5+2.90e5i)T+(−1.35e11−2.35e11i)T2 |
| 47 | 1+(−1.54e5+2.67e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1−1.56e5T+1.17e12T2 |
| 59 | 1+(−8.73e5−1.51e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(−1.39e6+2.41e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(−4.55e5−7.89e5i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+3.70e5T+9.09e12T2 |
| 73 | 1−2.89e5T+1.10e13T2 |
| 79 | 1+(−8.17e4+1.41e5i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+(−1.24e6+2.16e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1+9.04e6T+4.42e13T2 |
| 97 | 1+(−3.35e5+5.80e5i)T+(−4.03e13−6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.99302169608105618034274078907, −12.61221994530803650541787527282, −11.58565274292716038556293076528, −9.657669445182808520031022145316, −8.619971562780052897657588948240, −7.63641225632915174243697567128, −6.65179832303583712890898730669, −5.61520158044253037487797790232, −2.95293719831774267110986679604, −0.919301310875239249746706992953,
0.853619748898797986459812733780, 2.70593074478762877329669141034, 3.86698317490954763733624079648, 5.62976010694115014825037030206, 7.85945538588442760826153938283, 9.256841778243820049829967934503, 9.853553059919718244912351930442, 10.89115682947971747425101685146, 11.76270541847321429224440234060, 13.13398468116418885341654124146