L(s) = 1 | + (−4.18 + 7.24i)2-s + (−46.5 − 4.69i)3-s + (28.9 + 50.1i)4-s + (47.2 + 81.8i)5-s + (228. − 317. i)6-s + (−171.5 + 297. i)7-s − 1.55e3·8-s + (2.14e3 + 436. i)9-s − 790.·10-s + (−3.76e3 + 6.51e3i)11-s + (−1.11e3 − 2.47e3i)12-s + (5.72e3 + 9.91e3i)13-s + (−1.43e3 − 2.48e3i)14-s + (−1.81e3 − 4.02e3i)15-s + (2.80e3 − 4.85e3i)16-s + 1.59e4·17-s + ⋯ |
L(s) = 1 | + (−0.369 + 0.640i)2-s + (−0.994 − 0.100i)3-s + (0.226 + 0.392i)4-s + (0.169 + 0.292i)5-s + (0.432 − 0.600i)6-s + (−0.188 + 0.327i)7-s − 1.07·8-s + (0.979 + 0.199i)9-s − 0.250·10-s + (−0.852 + 1.47i)11-s + (−0.185 − 0.412i)12-s + (0.722 + 1.25i)13-s + (−0.139 − 0.242i)14-s + (−0.138 − 0.308i)15-s + (0.171 − 0.296i)16-s + 0.789·17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(−0.366+0.930i)Λ(8−s)
Λ(s)=(=(63s/2ΓC(s+7/2)L(s)(−0.366+0.930i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
−0.366+0.930i
|
Analytic conductor: |
19.6802 |
Root analytic conductor: |
4.43624 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :7/2), −0.366+0.930i)
|
Particular Values
L(4) |
≈ |
0.222800−0.327336i |
L(21) |
≈ |
0.222800−0.327336i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(46.5+4.69i)T |
| 7 | 1+(171.5−297.i)T |
good | 2 | 1+(4.18−7.24i)T+(−64−110.i)T2 |
| 5 | 1+(−47.2−81.8i)T+(−3.90e4+6.76e4i)T2 |
| 11 | 1+(3.76e3−6.51e3i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(−5.72e3−9.91e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1−1.59e4T+4.10e8T2 |
| 19 | 1+3.59e4T+8.93e8T2 |
| 23 | 1+(4.27e4+7.40e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(2.03e3−3.52e3i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+(−9.61e3−1.66e4i)T+(−1.37e10+2.38e10i)T2 |
| 37 | 1−2.78e5T+9.49e10T2 |
| 41 | 1+(5.60e4+9.71e4i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+(−1.27e5+2.21e5i)T+(−1.35e11−2.35e11i)T2 |
| 47 | 1+(2.86e5−4.95e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+1.44e6T+1.17e12T2 |
| 59 | 1+(1.37e6+2.38e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(6.41e5−1.11e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(−1.97e6−3.42e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1−1.16e6T+9.09e12T2 |
| 73 | 1−1.35e6T+1.10e13T2 |
| 79 | 1+(−3.36e6+5.82e6i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+(3.24e6−5.61e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1+8.78e6T+4.42e13T2 |
| 97 | 1+(−3.21e6+5.56e6i)T+(−4.03e13−6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.55091142305569291353607473123, −12.74111000157605755337996769729, −12.19147961494053552683045728436, −10.86543244104647200079751716697, −9.693635522715906406100492686624, −8.150598209545749346900239316519, −6.87023684262995714323726567818, −6.15814047794797518466247762740, −4.44341645406027649200038875025, −2.19568258221450216734634513762,
0.19887850184247835096704003094, 1.21831551688700901783491181461, 3.30716397675569232821474390369, 5.46368356546174798862983366294, 6.13854263180255882285850425161, 8.062487174228664314839230080507, 9.655559712735681040868375261445, 10.70456811206095860713385733225, 11.15800937258386669040849953974, 12.54893052762025233244416397631