L(s) = 1 | − i·2-s − 4-s + (−2.22 − 0.224i)5-s + i·7-s + i·8-s + (−0.224 + 2.22i)10-s + 4.89·11-s + 4.44i·13-s + 14-s + 16-s + 2i·17-s − 1.55·19-s + (2.22 + 0.224i)20-s − 4.89i·22-s − 2.89i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (−0.994 − 0.100i)5-s + 0.377i·7-s + 0.353i·8-s + (−0.0710 + 0.703i)10-s + 1.47·11-s + 1.23i·13-s + 0.267·14-s + 0.250·16-s + 0.485i·17-s − 0.355·19-s + (0.497 + 0.0502i)20-s − 1.04i·22-s − 0.604i·23-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(0.994+0.100i)Λ(2−s)
Λ(s)=(=(630s/2ΓC(s+1/2)L(s)(0.994+0.100i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
0.994+0.100i
|
Analytic conductor: |
5.03057 |
Root analytic conductor: |
2.24289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :1/2), 0.994+0.100i)
|
Particular Values
L(1) |
≈ |
1.20180−0.0605493i |
L(21) |
≈ |
1.20180−0.0605493i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 5 | 1+(2.22+0.224i)T |
| 7 | 1−iT |
good | 11 | 1−4.89T+11T2 |
| 13 | 1−4.44iT−13T2 |
| 17 | 1−2iT−17T2 |
| 19 | 1+1.55T+19T2 |
| 23 | 1+2.89iT−23T2 |
| 29 | 1−6.89T+29T2 |
| 31 | 1−8.89T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1−1.10T+41T2 |
| 43 | 1+0.898iT−43T2 |
| 47 | 1−8.89iT−47T2 |
| 53 | 1−10.8iT−53T2 |
| 59 | 1+1.55T+59T2 |
| 61 | 1−3.55T+61T2 |
| 67 | 1−8iT−67T2 |
| 71 | 1−1.10T+71T2 |
| 73 | 1−2.89iT−73T2 |
| 79 | 1+6.89T+79T2 |
| 83 | 1−2.44iT−83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+15.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.77978238130661553106619261712, −9.688977376503746855911810381446, −8.830133923242571812937321381777, −8.305228659001904633933983976304, −6.96789027740596121622536605099, −6.17813385027328162864953002477, −4.47739934615752819725415685874, −4.13835302570792377367435308883, −2.78941120750453085865894528983, −1.26269572151845981901787625124,
0.822428553646264225555685138781, 3.17361220245073802465020795395, 4.11105245719994294565629021426, 5.04091120199844640166316057104, 6.37534852595493371583771746251, 7.00375233718295929533320522989, 8.008271270560157847940488043327, 8.557246996831482733398238683821, 9.679831163742516411236608743851, 10.52249599462199763648347994259