L(s) = 1 | + (−1.41 + 1.41i)2-s − 4.00i·4-s + (1.74 + 11.0i)5-s + (−4.94 − 4.94i)7-s + (5.65 + 5.65i)8-s + (−18.0 − 13.1i)10-s + 2.28i·11-s + (25.7 − 25.7i)13-s + 14.0·14-s − 16.0·16-s + (−71.5 + 71.5i)17-s − 50.6i·19-s + (44.1 − 6.98i)20-s + (−3.23 − 3.23i)22-s + (−53.7 − 53.7i)23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (0.156 + 0.987i)5-s + (−0.267 − 0.267i)7-s + (0.250 + 0.250i)8-s + (−0.571 − 0.415i)10-s + 0.0627i·11-s + (0.549 − 0.549i)13-s + 0.267·14-s − 0.250·16-s + (−1.02 + 1.02i)17-s − 0.611i·19-s + (0.493 − 0.0780i)20-s + (−0.0313 − 0.0313i)22-s + (−0.487 − 0.487i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0947 + 0.995i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0947 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4643549060\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4643549060\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 - 1.41i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.74 - 11.0i)T \) |
| 7 | \( 1 + (4.94 + 4.94i)T \) |
good | 11 | \( 1 - 2.28iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (-25.7 + 25.7i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + (71.5 - 71.5i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 + 50.6iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (53.7 + 53.7i)T + 1.21e4iT^{2} \) |
| 29 | \( 1 - 186.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 211.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (70.1 + 70.1i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 50.2iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (102. - 102. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (-216. + 216. i)T - 1.03e5iT^{2} \) |
| 53 | \( 1 + (91.3 + 91.3i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + 234.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 22.8T + 2.26e5T^{2} \) |
| 67 | \( 1 + (267. + 267. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 408. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-15.6 + 15.6i)T - 3.89e5iT^{2} \) |
| 79 | \( 1 + 426. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (659. + 659. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 331.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (875. + 875. i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12172176439441190338755308060, −9.031968330032814626090029480245, −8.232476321651897297252485468079, −7.22993630211233663035638046070, −6.50271297928474964528619462358, −5.80627231864993766567571035175, −4.38163427750618067184688690136, −3.18077789888685880537899688313, −1.88779999494582324714239831690, −0.16526238789031400076098982499,
1.21120758590675323706953763806, 2.34332134572628696854141307365, 3.74434119572147679118435840124, 4.74375301065508561799683580929, 5.85092062035341653980544618605, 6.93570224175945804132488563914, 8.056498816326432643178856872308, 8.899692771847225042811626970595, 9.356801291102008581271066950192, 10.29148584329868389919913922681