L(s) = 1 | + (1.41 − 1.41i)2-s − 4.00i·4-s + (10.3 − 4.33i)5-s + (4.94 + 4.94i)7-s + (−5.65 − 5.65i)8-s + (8.44 − 20.7i)10-s + 8.72i·11-s + (3.39 − 3.39i)13-s + 14.0·14-s − 16.0·16-s + (35.6 − 35.6i)17-s − 87.4i·19-s + (−17.3 − 41.2i)20-s + (12.3 + 12.3i)22-s + (8.19 + 8.19i)23-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s − 0.500i·4-s + (0.921 − 0.387i)5-s + (0.267 + 0.267i)7-s + (−0.250 − 0.250i)8-s + (0.267 − 0.654i)10-s + 0.239i·11-s + (0.0724 − 0.0724i)13-s + 0.267·14-s − 0.250·16-s + (0.508 − 0.508i)17-s − 1.05i·19-s + (−0.193 − 0.460i)20-s + (0.119 + 0.119i)22-s + (0.0743 + 0.0743i)23-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(−0.00354+0.999i)Λ(4−s)
Λ(s)=(=(630s/2ΓC(s+3/2)L(s)(−0.00354+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
−0.00354+0.999i
|
Analytic conductor: |
37.1712 |
Root analytic conductor: |
6.09681 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(197,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :3/2), −0.00354+0.999i)
|
Particular Values
L(2) |
≈ |
3.240702223 |
L(21) |
≈ |
3.240702223 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.41+1.41i)T |
| 3 | 1 |
| 5 | 1+(−10.3+4.33i)T |
| 7 | 1+(−4.94−4.94i)T |
good | 11 | 1−8.72iT−1.33e3T2 |
| 13 | 1+(−3.39+3.39i)T−2.19e3iT2 |
| 17 | 1+(−35.6+35.6i)T−4.91e3iT2 |
| 19 | 1+87.4iT−6.85e3T2 |
| 23 | 1+(−8.19−8.19i)T+1.21e4iT2 |
| 29 | 1−199.T+2.43e4T2 |
| 31 | 1+21.6T+2.97e4T2 |
| 37 | 1+(−6.63−6.63i)T+5.06e4iT2 |
| 41 | 1+95.4iT−6.89e4T2 |
| 43 | 1+(−144.+144.i)T−7.95e4iT2 |
| 47 | 1+(30.7−30.7i)T−1.03e5iT2 |
| 53 | 1+(221.+221.i)T+1.48e5iT2 |
| 59 | 1+531.T+2.05e5T2 |
| 61 | 1−578.T+2.26e5T2 |
| 67 | 1+(−222.−222.i)T+3.00e5iT2 |
| 71 | 1−134.iT−3.57e5T2 |
| 73 | 1+(−111.+111.i)T−3.89e5iT2 |
| 79 | 1+1.23e3iT−4.93e5T2 |
| 83 | 1+(336.+336.i)T+5.71e5iT2 |
| 89 | 1+509.T+7.04e5T2 |
| 97 | 1+(−408.−408.i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01258400737511696408845407480, −9.278604681347568811879123872695, −8.462726809929083686096531878875, −7.14444151055415215241553269349, −6.14308759414238664718317348138, −5.22297100660050189721570401457, −4.54865883486199647168656748027, −3.04807293144207572191752442955, −2.07305901798702986796856418952, −0.842646020015587793720714513357,
1.38972346293161601953375863994, 2.75795646430239163271116289438, 3.88081058527699257562177955452, 5.06077784602578624468133320279, 5.96294054608124450835798817446, 6.61612430667934373589744249303, 7.70529715780556879504814246076, 8.496516652148740330231168792519, 9.615842781526480678562465340783, 10.38699202802616365495355130726