Properties

Label 2-630-15.8-c3-0-4
Degree 22
Conductor 630630
Sign 0.09470.995i0.0947 - 0.995i
Analytic cond. 37.171237.1712
Root an. cond. 6.096816.09681
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.41 − 1.41i)2-s + 4.00i·4-s + (1.74 − 11.0i)5-s + (−4.94 + 4.94i)7-s + (5.65 − 5.65i)8-s + (−18.0 + 13.1i)10-s − 2.28i·11-s + (25.7 + 25.7i)13-s + 14.0·14-s − 16.0·16-s + (−71.5 − 71.5i)17-s + 50.6i·19-s + (44.1 + 6.98i)20-s + (−3.23 + 3.23i)22-s + (−53.7 + 53.7i)23-s + ⋯
L(s)  = 1  + (−0.499 − 0.499i)2-s + 0.500i·4-s + (0.156 − 0.987i)5-s + (−0.267 + 0.267i)7-s + (0.250 − 0.250i)8-s + (−0.571 + 0.415i)10-s − 0.0627i·11-s + (0.549 + 0.549i)13-s + 0.267·14-s − 0.250·16-s + (−1.02 − 1.02i)17-s + 0.611i·19-s + (0.493 + 0.0780i)20-s + (−0.0313 + 0.0313i)22-s + (−0.487 + 0.487i)23-s + ⋯

Functional equation

Λ(s)=(630s/2ΓC(s)L(s)=((0.09470.995i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0947 - 0.995i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(630s/2ΓC(s+3/2)L(s)=((0.09470.995i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0947 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 630630    =    232572 \cdot 3^{2} \cdot 5 \cdot 7
Sign: 0.09470.995i0.0947 - 0.995i
Analytic conductor: 37.171237.1712
Root analytic conductor: 6.096816.09681
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ630(323,)\chi_{630} (323, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 630, ( :3/2), 0.09470.995i)(2,\ 630,\ (\ :3/2),\ 0.0947 - 0.995i)

Particular Values

L(2)L(2) \approx 0.46435490600.4643549060
L(12)L(\frac12) \approx 0.46435490600.4643549060
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.41+1.41i)T 1 + (1.41 + 1.41i)T
3 1 1
5 1+(1.74+11.0i)T 1 + (-1.74 + 11.0i)T
7 1+(4.944.94i)T 1 + (4.94 - 4.94i)T
good11 1+2.28iT1.33e3T2 1 + 2.28iT - 1.33e3T^{2}
13 1+(25.725.7i)T+2.19e3iT2 1 + (-25.7 - 25.7i)T + 2.19e3iT^{2}
17 1+(71.5+71.5i)T+4.91e3iT2 1 + (71.5 + 71.5i)T + 4.91e3iT^{2}
19 150.6iT6.85e3T2 1 - 50.6iT - 6.85e3T^{2}
23 1+(53.753.7i)T1.21e4iT2 1 + (53.7 - 53.7i)T - 1.21e4iT^{2}
29 1186.T+2.43e4T2 1 - 186.T + 2.43e4T^{2}
31 1+211.T+2.97e4T2 1 + 211.T + 2.97e4T^{2}
37 1+(70.170.1i)T5.06e4iT2 1 + (70.1 - 70.1i)T - 5.06e4iT^{2}
41 1+50.2iT6.89e4T2 1 + 50.2iT - 6.89e4T^{2}
43 1+(102.+102.i)T+7.95e4iT2 1 + (102. + 102. i)T + 7.95e4iT^{2}
47 1+(216.216.i)T+1.03e5iT2 1 + (-216. - 216. i)T + 1.03e5iT^{2}
53 1+(91.391.3i)T1.48e5iT2 1 + (91.3 - 91.3i)T - 1.48e5iT^{2}
59 1+234.T+2.05e5T2 1 + 234.T + 2.05e5T^{2}
61 1+22.8T+2.26e5T2 1 + 22.8T + 2.26e5T^{2}
67 1+(267.267.i)T3.00e5iT2 1 + (267. - 267. i)T - 3.00e5iT^{2}
71 1408.iT3.57e5T2 1 - 408. iT - 3.57e5T^{2}
73 1+(15.615.6i)T+3.89e5iT2 1 + (-15.6 - 15.6i)T + 3.89e5iT^{2}
79 1426.iT4.93e5T2 1 - 426. iT - 4.93e5T^{2}
83 1+(659.659.i)T5.71e5iT2 1 + (659. - 659. i)T - 5.71e5iT^{2}
89 1331.T+7.04e5T2 1 - 331.T + 7.04e5T^{2}
97 1+(875.875.i)T9.12e5iT2 1 + (875. - 875. i)T - 9.12e5iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.29148584329868389919913922681, −9.356801291102008581271066950192, −8.899692771847225042811626970595, −8.056498816326432643178856872308, −6.93570224175945804132488563914, −5.85092062035341653980544618605, −4.74375301065508561799683580929, −3.74434119572147679118435840124, −2.34332134572628696854141307365, −1.21120758590675323706953763806, 0.16526238789031400076098982499, 1.88779999494582324714239831690, 3.18077789888685880537899688313, 4.38163427750618067184688690136, 5.80627231864993766567571035175, 6.50271297928474964528619462358, 7.22993630211233663035638046070, 8.232476321651897297252485468079, 9.031968330032814626090029480245, 10.12172176439441190338755308060

Graph of the ZZ-function along the critical line