L(s) = 1 | + (−1.41 − 1.41i)2-s + 4.00i·4-s + (1.74 − 11.0i)5-s + (−4.94 + 4.94i)7-s + (5.65 − 5.65i)8-s + (−18.0 + 13.1i)10-s − 2.28i·11-s + (25.7 + 25.7i)13-s + 14.0·14-s − 16.0·16-s + (−71.5 − 71.5i)17-s + 50.6i·19-s + (44.1 + 6.98i)20-s + (−3.23 + 3.23i)22-s + (−53.7 + 53.7i)23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (0.156 − 0.987i)5-s + (−0.267 + 0.267i)7-s + (0.250 − 0.250i)8-s + (−0.571 + 0.415i)10-s − 0.0627i·11-s + (0.549 + 0.549i)13-s + 0.267·14-s − 0.250·16-s + (−1.02 − 1.02i)17-s + 0.611i·19-s + (0.493 + 0.0780i)20-s + (−0.0313 + 0.0313i)22-s + (−0.487 + 0.487i)23-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(0.0947−0.995i)Λ(4−s)
Λ(s)=(=(630s/2ΓC(s+3/2)L(s)(0.0947−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
0.0947−0.995i
|
Analytic conductor: |
37.1712 |
Root analytic conductor: |
6.09681 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(323,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :3/2), 0.0947−0.995i)
|
Particular Values
L(2) |
≈ |
0.4643549060 |
L(21) |
≈ |
0.4643549060 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.41+1.41i)T |
| 3 | 1 |
| 5 | 1+(−1.74+11.0i)T |
| 7 | 1+(4.94−4.94i)T |
good | 11 | 1+2.28iT−1.33e3T2 |
| 13 | 1+(−25.7−25.7i)T+2.19e3iT2 |
| 17 | 1+(71.5+71.5i)T+4.91e3iT2 |
| 19 | 1−50.6iT−6.85e3T2 |
| 23 | 1+(53.7−53.7i)T−1.21e4iT2 |
| 29 | 1−186.T+2.43e4T2 |
| 31 | 1+211.T+2.97e4T2 |
| 37 | 1+(70.1−70.1i)T−5.06e4iT2 |
| 41 | 1+50.2iT−6.89e4T2 |
| 43 | 1+(102.+102.i)T+7.95e4iT2 |
| 47 | 1+(−216.−216.i)T+1.03e5iT2 |
| 53 | 1+(91.3−91.3i)T−1.48e5iT2 |
| 59 | 1+234.T+2.05e5T2 |
| 61 | 1+22.8T+2.26e5T2 |
| 67 | 1+(267.−267.i)T−3.00e5iT2 |
| 71 | 1−408.iT−3.57e5T2 |
| 73 | 1+(−15.6−15.6i)T+3.89e5iT2 |
| 79 | 1−426.iT−4.93e5T2 |
| 83 | 1+(659.−659.i)T−5.71e5iT2 |
| 89 | 1−331.T+7.04e5T2 |
| 97 | 1+(875.−875.i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.29148584329868389919913922681, −9.356801291102008581271066950192, −8.899692771847225042811626970595, −8.056498816326432643178856872308, −6.93570224175945804132488563914, −5.85092062035341653980544618605, −4.74375301065508561799683580929, −3.74434119572147679118435840124, −2.34332134572628696854141307365, −1.21120758590675323706953763806,
0.16526238789031400076098982499, 1.88779999494582324714239831690, 3.18077789888685880537899688313, 4.38163427750618067184688690136, 5.80627231864993766567571035175, 6.50271297928474964528619462358, 7.22993630211233663035638046070, 8.232476321651897297252485468079, 9.031968330032814626090029480245, 10.12172176439441190338755308060