L(s) = 1 | + (−1.29 − 2.30i)7-s + (−1.33 − 0.768i)11-s − 0.219i·13-s + (0.713 − 1.23i)17-s + (−3.80 + 2.19i)19-s + (−0.673 + 0.389i)23-s + 6.82i·29-s + (5.32 + 3.07i)31-s + (2.99 + 5.19i)37-s − 8.90·41-s − 1.91·43-s + (5.60 + 9.70i)47-s + (−3.62 + 5.98i)49-s + (4.18 + 2.41i)53-s + (0.336 − 0.582i)59-s + ⋯ |
L(s) = 1 | + (−0.490 − 0.871i)7-s + (−0.401 − 0.231i)11-s − 0.0608i·13-s + (0.172 − 0.299i)17-s + (−0.872 + 0.503i)19-s + (−0.140 + 0.0811i)23-s + 1.26i·29-s + (0.956 + 0.552i)31-s + (0.492 + 0.853i)37-s − 1.39·41-s − 0.292·43-s + (0.817 + 1.41i)47-s + (−0.518 + 0.855i)49-s + (0.574 + 0.331i)53-s + (0.0437 − 0.0758i)59-s + ⋯ |
Λ(s)=(=(6300s/2ΓC(s)L(s)(0.999−0.0243i)Λ(2−s)
Λ(s)=(=(6300s/2ΓC(s+1/2)L(s)(0.999−0.0243i)Λ(1−s)
Degree: |
2 |
Conductor: |
6300
= 22⋅32⋅52⋅7
|
Sign: |
0.999−0.0243i
|
Analytic conductor: |
50.3057 |
Root analytic conductor: |
7.09265 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6300(4301,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 6300, ( :1/2), 0.999−0.0243i)
|
Particular Values
L(1) |
≈ |
1.479274996 |
L(21) |
≈ |
1.479274996 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
| 7 | 1+(1.29+2.30i)T |
good | 11 | 1+(1.33+0.768i)T+(5.5+9.52i)T2 |
| 13 | 1+0.219iT−13T2 |
| 17 | 1+(−0.713+1.23i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3.80−2.19i)T+(9.5−16.4i)T2 |
| 23 | 1+(0.673−0.389i)T+(11.5−19.9i)T2 |
| 29 | 1−6.82iT−29T2 |
| 31 | 1+(−5.32−3.07i)T+(15.5+26.8i)T2 |
| 37 | 1+(−2.99−5.19i)T+(−18.5+32.0i)T2 |
| 41 | 1+8.90T+41T2 |
| 43 | 1+1.91T+43T2 |
| 47 | 1+(−5.60−9.70i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−4.18−2.41i)T+(26.5+45.8i)T2 |
| 59 | 1+(−0.336+0.582i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−9.64+5.56i)T+(30.5−52.8i)T2 |
| 67 | 1+(−5.65+9.78i)T+(−33.5−58.0i)T2 |
| 71 | 1+8.48iT−71T2 |
| 73 | 1+(1.88+1.09i)T+(36.5+63.2i)T2 |
| 79 | 1+(3.19+5.53i)T+(−39.5+68.4i)T2 |
| 83 | 1−5.09T+83T2 |
| 89 | 1+(−2.97−5.15i)T+(−44.5+77.0i)T2 |
| 97 | 1+12.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.045316471348587623235933313779, −7.31235199708929248191474972765, −6.62290696892860848501952110115, −6.07419137165348865738741243130, −5.07331739909457531871898347982, −4.46464376363594717681463285337, −3.51350700969224775283842567561, −2.96392243907489154058744596315, −1.76576306452209620335062193956, −0.68193502591586643432370889422,
0.56195921557517308292363659846, 2.15212639862435527424749403059, 2.52574583326005004876145772741, 3.65737782756810352240011004840, 4.37121246643170749038605223624, 5.31236540424683469184128419614, 5.87833676679504510389507180547, 6.61364659594462110402256866891, 7.23515154453276075437223502110, 8.317087028104678643426840207016