L(s) = 1 | + (−1.29 − 2.30i)7-s + (−1.33 − 0.768i)11-s − 0.219i·13-s + (0.713 − 1.23i)17-s + (−3.80 + 2.19i)19-s + (−0.673 + 0.389i)23-s + 6.82i·29-s + (5.32 + 3.07i)31-s + (2.99 + 5.19i)37-s − 8.90·41-s − 1.91·43-s + (5.60 + 9.70i)47-s + (−3.62 + 5.98i)49-s + (4.18 + 2.41i)53-s + (0.336 − 0.582i)59-s + ⋯ |
L(s) = 1 | + (−0.490 − 0.871i)7-s + (−0.401 − 0.231i)11-s − 0.0608i·13-s + (0.172 − 0.299i)17-s + (−0.872 + 0.503i)19-s + (−0.140 + 0.0811i)23-s + 1.26i·29-s + (0.956 + 0.552i)31-s + (0.492 + 0.853i)37-s − 1.39·41-s − 0.292·43-s + (0.817 + 1.41i)47-s + (−0.518 + 0.855i)49-s + (0.574 + 0.331i)53-s + (0.0437 − 0.0758i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0243i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0243i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.479274996\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.479274996\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (1.29 + 2.30i)T \) |
good | 11 | \( 1 + (1.33 + 0.768i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 0.219iT - 13T^{2} \) |
| 17 | \( 1 + (-0.713 + 1.23i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.80 - 2.19i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.673 - 0.389i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6.82iT - 29T^{2} \) |
| 31 | \( 1 + (-5.32 - 3.07i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.99 - 5.19i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.90T + 41T^{2} \) |
| 43 | \( 1 + 1.91T + 43T^{2} \) |
| 47 | \( 1 + (-5.60 - 9.70i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.18 - 2.41i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.336 + 0.582i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.64 + 5.56i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.65 + 9.78i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.48iT - 71T^{2} \) |
| 73 | \( 1 + (1.88 + 1.09i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.19 + 5.53i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 5.09T + 83T^{2} \) |
| 89 | \( 1 + (-2.97 - 5.15i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 12.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.045316471348587623235933313779, −7.31235199708929248191474972765, −6.62290696892860848501952110115, −6.07419137165348865738741243130, −5.07331739909457531871898347982, −4.46464376363594717681463285337, −3.51350700969224775283842567561, −2.96392243907489154058744596315, −1.76576306452209620335062193956, −0.68193502591586643432370889422,
0.56195921557517308292363659846, 2.15212639862435527424749403059, 2.52574583326005004876145772741, 3.65737782756810352240011004840, 4.37121246643170749038605223624, 5.31236540424683469184128419614, 5.87833676679504510389507180547, 6.61364659594462110402256866891, 7.23515154453276075437223502110, 8.317087028104678643426840207016