L(s) = 1 | + i·7-s + 6·11-s − 2i·13-s + 4·19-s − 6i·23-s + 6·29-s + 8·31-s + 2i·37-s − 12·41-s + 4i·43-s − 12i·47-s − 49-s − 6i·53-s − 10·61-s + 8i·67-s + ⋯ |
L(s) = 1 | + 0.377i·7-s + 1.80·11-s − 0.554i·13-s + 0.917·19-s − 1.25i·23-s + 1.11·29-s + 1.43·31-s + 0.328i·37-s − 1.87·41-s + 0.609i·43-s − 1.75i·47-s − 0.142·49-s − 0.824i·53-s − 1.28·61-s + 0.977i·67-s + ⋯ |
Λ(s)=(=(6300s/2ΓC(s)L(s)(0.894+0.447i)Λ(2−s)
Λ(s)=(=(6300s/2ΓC(s+1/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
6300
= 22⋅32⋅52⋅7
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
50.3057 |
Root analytic conductor: |
7.09265 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6300(6049,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 6300, ( :1/2), 0.894+0.447i)
|
Particular Values
L(1) |
≈ |
2.399372177 |
L(21) |
≈ |
2.399372177 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
| 7 | 1−iT |
good | 11 | 1−6T+11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1−17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1+12T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1+12iT−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1−8iT−67T2 |
| 71 | 1+6T+71T2 |
| 73 | 1−10iT−73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1+12iT−83T2 |
| 89 | 1−12T+89T2 |
| 97 | 1+10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.248811662233940481852217313048, −7.09202293056876309228527824723, −6.58274237140609938530377426043, −6.01516525757656425775262953203, −5.03256300300425476626843118864, −4.42735300891593009444764014884, −3.48434347903952138590673767717, −2.81514690297851522087089700088, −1.66048934383948113939919306771, −0.74438357632839803568015666113,
1.03261491511701919146318739714, 1.65603105868881597132470199974, 2.99850710010784147513581177145, 3.69508927659995564259377443052, 4.43040979552528500862834811718, 5.12358101024344324129832713009, 6.27549974579458084361128064107, 6.52017477764552950444850539455, 7.38827832652121158513470294345, 7.990084037998074328060509500241