L(s) = 1 | + 5-s + 4·7-s + 11-s + 2·13-s + 2·19-s − 9·23-s − 4·25-s + 4·29-s + 5·31-s + 4·35-s + 9·37-s − 2·41-s + 6·43-s + 4·47-s + 9·49-s − 6·53-s + 55-s − 5·59-s + 2·65-s + 13·67-s + 71-s + 14·73-s + 4·77-s − 10·79-s + 14·83-s + 13·89-s + 8·91-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 1.51·7-s + 0.301·11-s + 0.554·13-s + 0.458·19-s − 1.87·23-s − 4/5·25-s + 0.742·29-s + 0.898·31-s + 0.676·35-s + 1.47·37-s − 0.312·41-s + 0.914·43-s + 0.583·47-s + 9/7·49-s − 0.824·53-s + 0.134·55-s − 0.650·59-s + 0.248·65-s + 1.58·67-s + 0.118·71-s + 1.63·73-s + 0.455·77-s − 1.12·79-s + 1.53·83-s + 1.37·89-s + 0.838·91-s + ⋯ |
Λ(s)=(=(6336s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6336s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.950446744 |
L(21) |
≈ |
2.950446744 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1−T |
good | 5 | 1−T+pT2 |
| 7 | 1−4T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1+9T+pT2 |
| 29 | 1−4T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1−9T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+5T+pT2 |
| 61 | 1+pT2 |
| 67 | 1−13T+pT2 |
| 71 | 1−T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−14T+pT2 |
| 89 | 1−13T+pT2 |
| 97 | 1+19T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.071377128053344859894122622868, −7.56519678805781130407848167694, −6.44172225692526725575978123475, −5.95276051706536103373758696818, −5.17985594858562856526380380343, −4.40058804882834120573816231371, −3.81710770374657855777982606596, −2.54475665197812259665515911745, −1.81621868705930417076350207872, −0.955095243892024995431714781385,
0.955095243892024995431714781385, 1.81621868705930417076350207872, 2.54475665197812259665515911745, 3.81710770374657855777982606596, 4.40058804882834120573816231371, 5.17985594858562856526380380343, 5.95276051706536103373758696818, 6.44172225692526725575978123475, 7.56519678805781130407848167694, 8.071377128053344859894122622868