Properties

Label 2-6336-1.1-c1-0-0
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.561·5-s − 5.12·7-s − 11-s − 3.12·13-s − 2·17-s + 4·19-s − 6.56·23-s − 4.68·25-s + 3.12·29-s − 1.43·31-s + 2.87·35-s + 3.43·37-s − 7.12·41-s − 1.12·43-s − 8·47-s + 19.2·49-s − 4.24·53-s + 0.561·55-s − 12.8·59-s + 7.12·61-s + 1.75·65-s − 5.43·67-s − 3.68·71-s − 3.12·73-s + 5.12·77-s − 2.87·79-s + 9.12·83-s + ⋯
L(s)  = 1  − 0.251·5-s − 1.93·7-s − 0.301·11-s − 0.866·13-s − 0.485·17-s + 0.917·19-s − 1.36·23-s − 0.936·25-s + 0.579·29-s − 0.258·31-s + 0.486·35-s + 0.565·37-s − 1.11·41-s − 0.171·43-s − 1.16·47-s + 2.74·49-s − 0.583·53-s + 0.0757·55-s − 1.66·59-s + 0.912·61-s + 0.217·65-s − 0.664·67-s − 0.437·71-s − 0.365·73-s + 0.583·77-s − 0.323·79-s + 1.00·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5159338435\)
\(L(\frac12)\) \(\approx\) \(0.5159338435\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 0.561T + 5T^{2} \)
7 \( 1 + 5.12T + 7T^{2} \)
13 \( 1 + 3.12T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 + 6.56T + 23T^{2} \)
29 \( 1 - 3.12T + 29T^{2} \)
31 \( 1 + 1.43T + 31T^{2} \)
37 \( 1 - 3.43T + 37T^{2} \)
41 \( 1 + 7.12T + 41T^{2} \)
43 \( 1 + 1.12T + 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 + 4.24T + 53T^{2} \)
59 \( 1 + 12.8T + 59T^{2} \)
61 \( 1 - 7.12T + 61T^{2} \)
67 \( 1 + 5.43T + 67T^{2} \)
71 \( 1 + 3.68T + 71T^{2} \)
73 \( 1 + 3.12T + 73T^{2} \)
79 \( 1 + 2.87T + 79T^{2} \)
83 \( 1 - 9.12T + 83T^{2} \)
89 \( 1 - 9.68T + 89T^{2} \)
97 \( 1 - 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84960030077535263021306549704, −7.38182180226491932793983993091, −6.49375406684251816548198980593, −6.12615412230479030103308315268, −5.22049160386946861150690571969, −4.32733388686746680024234025036, −3.46975669874966716870517664579, −2.93720590940063199864601979211, −1.97344929397874887580778724500, −0.34799344596824056453445742882, 0.34799344596824056453445742882, 1.97344929397874887580778724500, 2.93720590940063199864601979211, 3.46975669874966716870517664579, 4.32733388686746680024234025036, 5.22049160386946861150690571969, 6.12615412230479030103308315268, 6.49375406684251816548198980593, 7.38182180226491932793983993091, 7.84960030077535263021306549704

Graph of the $Z$-function along the critical line