L(s) = 1 | − 0.381·2-s − 2.23·3-s − 1.85·4-s + 2.23·5-s + 0.854·6-s + 1.47·8-s + 2.00·9-s − 0.854·10-s − 3·11-s + 4.14·12-s + 13-s − 5.00·15-s + 3.14·16-s + 7.47·17-s − 0.763·18-s − 3·19-s − 4.14·20-s + 1.14·22-s − 3.76·23-s − 3.29·24-s − 0.381·26-s + 2.23·27-s − 4.47·29-s + 1.90·30-s − 5·31-s − 4.14·32-s + 6.70·33-s + ⋯ |
L(s) = 1 | − 0.270·2-s − 1.29·3-s − 0.927·4-s + 0.999·5-s + 0.348·6-s + 0.520·8-s + 0.666·9-s − 0.270·10-s − 0.904·11-s + 1.19·12-s + 0.277·13-s − 1.29·15-s + 0.786·16-s + 1.81·17-s − 0.180·18-s − 0.688·19-s − 0.927·20-s + 0.244·22-s − 0.784·23-s − 0.671·24-s − 0.0749·26-s + 0.430·27-s − 0.830·29-s + 0.348·30-s − 0.898·31-s − 0.732·32-s + 1.16·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 2 | \( 1 + 0.381T + 2T^{2} \) |
| 3 | \( 1 + 2.23T + 3T^{2} \) |
| 5 | \( 1 - 2.23T + 5T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 17 | \( 1 - 7.47T + 17T^{2} \) |
| 19 | \( 1 + 3T + 19T^{2} \) |
| 23 | \( 1 + 3.76T + 23T^{2} \) |
| 29 | \( 1 + 4.47T + 29T^{2} \) |
| 31 | \( 1 + 5T + 31T^{2} \) |
| 37 | \( 1 + 8.70T + 37T^{2} \) |
| 41 | \( 1 + 4.47T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + 1.47T + 47T^{2} \) |
| 53 | \( 1 - 1.47T + 53T^{2} \) |
| 59 | \( 1 + 7.47T + 59T^{2} \) |
| 61 | \( 1 + 3T + 61T^{2} \) |
| 67 | \( 1 + 3T + 67T^{2} \) |
| 71 | \( 1 - 8.94T + 71T^{2} \) |
| 73 | \( 1 + 10.7T + 73T^{2} \) |
| 79 | \( 1 - 10.7T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 2.23T + 89T^{2} \) |
| 97 | \( 1 - 17.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26813337319332781669343398813, −9.535584811349761561598349820299, −8.460241464774015638621155340295, −7.53959975314164666285963391409, −6.20773811119268649499049361066, −5.48987176006989565595941322782, −5.02887787297504592985778238416, −3.55744827318528851282072200960, −1.63436554889716791348719925216, 0,
1.63436554889716791348719925216, 3.55744827318528851282072200960, 5.02887787297504592985778238416, 5.48987176006989565595941322782, 6.20773811119268649499049361066, 7.53959975314164666285963391409, 8.460241464774015638621155340295, 9.535584811349761561598349820299, 10.26813337319332781669343398813