L(s) = 1 | + (−1.65 + 1.65i)2-s + (2.39 − 1.38i)3-s − 3.50i·4-s + (0.412 − 1.53i)5-s + (−1.67 + 6.25i)6-s + (2.50 + 2.50i)8-s + (2.30 − 4.00i)9-s + (1.87 + 3.23i)10-s + (0.813 − 3.03i)11-s + (−4.84 − 8.39i)12-s + (−1.04 − 3.44i)13-s + (−1.13 − 4.24i)15-s − 1.29·16-s − 0.641·17-s + (2.80 + 10.4i)18-s + (−7.61 + 2.04i)19-s + ⋯ |
L(s) = 1 | + (−1.17 + 1.17i)2-s + (1.38 − 0.796i)3-s − 1.75i·4-s + (0.184 − 0.688i)5-s + (−0.684 + 2.55i)6-s + (0.886 + 0.886i)8-s + (0.769 − 1.33i)9-s + (0.591 + 1.02i)10-s + (0.245 − 0.914i)11-s + (−1.39 − 2.42i)12-s + (−0.290 − 0.956i)13-s + (−0.293 − 1.09i)15-s − 0.324·16-s − 0.155·17-s + (0.661 + 2.46i)18-s + (−1.74 + 0.468i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.656 + 0.754i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.656 + 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06748 - 0.485816i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06748 - 0.485816i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (1.04 + 3.44i)T \) |
good | 2 | \( 1 + (1.65 - 1.65i)T - 2iT^{2} \) |
| 3 | \( 1 + (-2.39 + 1.38i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.412 + 1.53i)T + (-4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (-0.813 + 3.03i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + 0.641T + 17T^{2} \) |
| 19 | \( 1 + (7.61 - 2.04i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 0.146iT - 23T^{2} \) |
| 29 | \( 1 + (-1.49 + 2.58i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.46 - 1.73i)T + (26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (2.75 + 2.75i)T + 37iT^{2} \) |
| 41 | \( 1 + (-5.60 + 1.50i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-2.42 + 1.40i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.04 - 0.816i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-3.66 + 6.34i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.93 + 2.93i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.90 - 2.25i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.36 - 0.366i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-13.8 - 3.70i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-1.82 - 6.81i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-0.316 - 0.548i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.07 - 1.07i)T + 83iT^{2} \) |
| 89 | \( 1 + (-9.60 + 9.60i)T - 89iT^{2} \) |
| 97 | \( 1 + (-0.0487 + 0.181i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.985922537179438384596310216768, −8.939903035050055453645097359060, −8.680603767934134280479755799879, −8.026458154849181949227685211052, −7.25835670485000188833687159479, −6.34730016209952083550394902778, −5.40737304091804598297012333972, −3.67050300587913366703867229306, −2.16831259424141905090545001325, −0.791930117588839082651286808422,
2.03722659257642604236417171096, 2.53324411341315071115373377573, 3.71221062940833013415930034045, 4.53504848999822076065552379161, 6.66240333631202600973021184473, 7.59509725203975571305421844126, 8.627411915901564087291878295008, 9.127810675323766776607779435260, 9.743102923131268584450295558440, 10.53843828027842234550071313236