L(s) = 1 | + (−1.65 + 1.65i)2-s + (2.39 − 1.38i)3-s − 3.50i·4-s + (0.412 − 1.53i)5-s + (−1.67 + 6.25i)6-s + (2.50 + 2.50i)8-s + (2.30 − 4.00i)9-s + (1.87 + 3.23i)10-s + (0.813 − 3.03i)11-s + (−4.84 − 8.39i)12-s + (−1.04 − 3.44i)13-s + (−1.13 − 4.24i)15-s − 1.29·16-s − 0.641·17-s + (2.80 + 10.4i)18-s + (−7.61 + 2.04i)19-s + ⋯ |
L(s) = 1 | + (−1.17 + 1.17i)2-s + (1.38 − 0.796i)3-s − 1.75i·4-s + (0.184 − 0.688i)5-s + (−0.684 + 2.55i)6-s + (0.886 + 0.886i)8-s + (0.769 − 1.33i)9-s + (0.591 + 1.02i)10-s + (0.245 − 0.914i)11-s + (−1.39 − 2.42i)12-s + (−0.290 − 0.956i)13-s + (−0.293 − 1.09i)15-s − 0.324·16-s − 0.155·17-s + (0.661 + 2.46i)18-s + (−1.74 + 0.468i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.656+0.754i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.656+0.754i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.656+0.754i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.656+0.754i)
|
Particular Values
L(1) |
≈ |
1.06748−0.485816i |
L(21) |
≈ |
1.06748−0.485816i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(1.04+3.44i)T |
good | 2 | 1+(1.65−1.65i)T−2iT2 |
| 3 | 1+(−2.39+1.38i)T+(1.5−2.59i)T2 |
| 5 | 1+(−0.412+1.53i)T+(−4.33−2.5i)T2 |
| 11 | 1+(−0.813+3.03i)T+(−9.52−5.5i)T2 |
| 17 | 1+0.641T+17T2 |
| 19 | 1+(7.61−2.04i)T+(16.4−9.5i)T2 |
| 23 | 1−0.146iT−23T2 |
| 29 | 1+(−1.49+2.58i)T+(−14.5−25.1i)T2 |
| 31 | 1+(6.46−1.73i)T+(26.8−15.5i)T2 |
| 37 | 1+(2.75+2.75i)T+37iT2 |
| 41 | 1+(−5.60+1.50i)T+(35.5−20.5i)T2 |
| 43 | 1+(−2.42+1.40i)T+(21.5−37.2i)T2 |
| 47 | 1+(−3.04−0.816i)T+(40.7+23.5i)T2 |
| 53 | 1+(−3.66+6.34i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−2.93+2.93i)T−59iT2 |
| 61 | 1+(−3.90−2.25i)T+(30.5+52.8i)T2 |
| 67 | 1+(−1.36−0.366i)T+(58.0+33.5i)T2 |
| 71 | 1+(−13.8−3.70i)T+(61.4+35.5i)T2 |
| 73 | 1+(−1.82−6.81i)T+(−63.2+36.5i)T2 |
| 79 | 1+(−0.316−0.548i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−1.07−1.07i)T+83iT2 |
| 89 | 1+(−9.60+9.60i)T−89iT2 |
| 97 | 1+(−0.0487+0.181i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.985922537179438384596310216768, −8.939903035050055453645097359060, −8.680603767934134280479755799879, −8.026458154849181949227685211052, −7.25835670485000188833687159479, −6.34730016209952083550394902778, −5.40737304091804598297012333972, −3.67050300587913366703867229306, −2.16831259424141905090545001325, −0.791930117588839082651286808422,
2.03722659257642604236417171096, 2.53324411341315071115373377573, 3.71221062940833013415930034045, 4.53504848999822076065552379161, 6.66240333631202600973021184473, 7.59509725203975571305421844126, 8.627411915901564087291878295008, 9.127810675323766776607779435260, 9.743102923131268584450295558440, 10.53843828027842234550071313236