L(s) = 1 | + (−0.976 + 0.976i)2-s + (−0.928 + 0.536i)3-s + 0.0940i·4-s + (0.742 − 2.77i)5-s + (0.383 − 1.42i)6-s + (−2.04 − 2.04i)8-s + (−0.925 + 1.60i)9-s + (1.98 + 3.43i)10-s + (−0.369 + 1.37i)11-s + (−0.0504 − 0.0873i)12-s + (−3.54 − 0.634i)13-s + (0.796 + 2.97i)15-s + 3.80·16-s + 4.19·17-s + (−0.661 − 2.46i)18-s + (5.95 − 1.59i)19-s + ⋯ |
L(s) = 1 | + (−0.690 + 0.690i)2-s + (−0.536 + 0.309i)3-s + 0.0470i·4-s + (0.332 − 1.23i)5-s + (0.156 − 0.583i)6-s + (−0.722 − 0.722i)8-s + (−0.308 + 0.534i)9-s + (0.626 + 1.08i)10-s + (−0.111 + 0.415i)11-s + (−0.0145 − 0.0252i)12-s + (−0.984 − 0.176i)13-s + (0.205 + 0.767i)15-s + 0.950·16-s + 1.01·17-s + (−0.155 − 0.581i)18-s + (1.36 − 0.366i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.970−0.242i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.970−0.242i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.970−0.242i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.970−0.242i)
|
Particular Values
L(1) |
≈ |
0.762048+0.0936953i |
L(21) |
≈ |
0.762048+0.0936953i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(3.54+0.634i)T |
good | 2 | 1+(0.976−0.976i)T−2iT2 |
| 3 | 1+(0.928−0.536i)T+(1.5−2.59i)T2 |
| 5 | 1+(−0.742+2.77i)T+(−4.33−2.5i)T2 |
| 11 | 1+(0.369−1.37i)T+(−9.52−5.5i)T2 |
| 17 | 1−4.19T+17T2 |
| 19 | 1+(−5.95+1.59i)T+(16.4−9.5i)T2 |
| 23 | 1+7.82iT−23T2 |
| 29 | 1+(−0.441+0.764i)T+(−14.5−25.1i)T2 |
| 31 | 1+(0.886−0.237i)T+(26.8−15.5i)T2 |
| 37 | 1+(−5.26−5.26i)T+37iT2 |
| 41 | 1+(−11.4+3.07i)T+(35.5−20.5i)T2 |
| 43 | 1+(−0.809+0.467i)T+(21.5−37.2i)T2 |
| 47 | 1+(−3.01−0.808i)T+(40.7+23.5i)T2 |
| 53 | 1+(1.26−2.18i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−4.13+4.13i)T−59iT2 |
| 61 | 1+(0.0739+0.0427i)T+(30.5+52.8i)T2 |
| 67 | 1+(0.995+0.266i)T+(58.0+33.5i)T2 |
| 71 | 1+(−2.79−0.750i)T+(61.4+35.5i)T2 |
| 73 | 1+(0.737+2.75i)T+(−63.2+36.5i)T2 |
| 79 | 1+(4.71+8.16i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.54+1.54i)T+83iT2 |
| 89 | 1+(3.48−3.48i)T−89iT2 |
| 97 | 1+(−2.37+8.87i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22964035395776020837843747008, −9.637521421327291505114726257350, −8.855872302037531683708255366402, −7.960013617180472161854856085578, −7.35045018337805881515774893189, −6.04269923820076863086210473980, −5.21678224515084601079389911284, −4.46309258386532417215216331315, −2.72660272921823896395754735970, −0.70499680770666218646120602920,
1.08231216032284397732413595636, 2.58435050874511909455275228983, 3.41490086954779292135962106097, 5.50876396283645586967771579922, 5.87996529019981506973131899553, 7.08925476700170397053191137966, 7.81648062953359737238978978265, 9.342775359555601435834566134885, 9.688910168512532963798307546604, 10.56864036288541358279754684300