L(s) = 1 | + (1.67 + 1.67i)2-s + (1.04 + 0.601i)3-s + 3.60i·4-s + (0.825 + 3.08i)5-s + (0.736 + 2.74i)6-s + (−2.68 + 2.68i)8-s + (−0.777 − 1.34i)9-s + (−3.77 + 6.54i)10-s + (−1.10 − 4.11i)11-s + (−2.16 + 3.75i)12-s + (3.48 + 0.920i)13-s + (−0.992 + 3.70i)15-s − 1.79·16-s − 1.44·17-s + (0.952 − 3.55i)18-s + (−2.42 − 0.649i)19-s + ⋯ |
L(s) = 1 | + (1.18 + 1.18i)2-s + (0.601 + 0.347i)3-s + 1.80i·4-s + (0.369 + 1.37i)5-s + (0.300 + 1.12i)6-s + (−0.950 + 0.950i)8-s + (−0.259 − 0.448i)9-s + (−1.19 + 2.06i)10-s + (−0.332 − 1.23i)11-s + (−0.625 + 1.08i)12-s + (0.966 + 0.255i)13-s + (−0.256 + 0.956i)15-s − 0.448·16-s − 0.350·17-s + (0.224 − 0.838i)18-s + (−0.556 − 0.149i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.777−0.628i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.777−0.628i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.777−0.628i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(362,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.777−0.628i)
|
Particular Values
L(1) |
≈ |
1.13354+3.20575i |
L(21) |
≈ |
1.13354+3.20575i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−3.48−0.920i)T |
good | 2 | 1+(−1.67−1.67i)T+2iT2 |
| 3 | 1+(−1.04−0.601i)T+(1.5+2.59i)T2 |
| 5 | 1+(−0.825−3.08i)T+(−4.33+2.5i)T2 |
| 11 | 1+(1.10+4.11i)T+(−9.52+5.5i)T2 |
| 17 | 1+1.44T+17T2 |
| 19 | 1+(2.42+0.649i)T+(16.4+9.5i)T2 |
| 23 | 1+5.23iT−23T2 |
| 29 | 1+(−1.34−2.32i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−5.14−1.37i)T+(26.8+15.5i)T2 |
| 37 | 1+(−0.438+0.438i)T−37iT2 |
| 41 | 1+(5.04+1.35i)T+(35.5+20.5i)T2 |
| 43 | 1+(5.46+3.15i)T+(21.5+37.2i)T2 |
| 47 | 1+(6.39−1.71i)T+(40.7−23.5i)T2 |
| 53 | 1+(−3.79−6.56i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1.43−1.43i)T+59iT2 |
| 61 | 1+(4.53−2.62i)T+(30.5−52.8i)T2 |
| 67 | 1+(8.46−2.26i)T+(58.0−33.5i)T2 |
| 71 | 1+(−8.31+2.22i)T+(61.4−35.5i)T2 |
| 73 | 1+(4.09−15.2i)T+(−63.2−36.5i)T2 |
| 79 | 1+(1.00−1.74i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−5.11+5.11i)T−83iT2 |
| 89 | 1+(4.95+4.95i)T+89iT2 |
| 97 | 1+(−1.62−6.06i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90762155873998999478750997754, −10.17017302395552789493905483039, −8.701480806329887688734173626333, −8.299662812750412598604565697834, −6.93085107540990682914089266429, −6.38784300828902565507073484586, −5.78105019567286752367410025140, −4.38324528439306708866916825579, −3.38527485909778066848201171643, −2.80683934906923212799248745898,
1.46356168347712078315503424466, 2.19886902641182525536732185422, 3.48754203456050373539790278626, 4.66856476623584455174871816698, 5.14221267529886539869554370342, 6.25905407321179438186127109982, 7.83109796115194892503155900402, 8.578148630712753109303378955344, 9.594665504351626240022524776687, 10.34343502469158653719182845908