L(s) = 1 | + (−1.18 + 1.18i)2-s + (0.552 + 0.318i)3-s − 0.809i·4-s + (−1.94 + 0.520i)5-s + (−1.03 + 0.276i)6-s + (−1.41 − 1.41i)8-s + (−1.29 − 2.24i)9-s + (1.68 − 2.91i)10-s + (−0.948 + 0.254i)11-s + (0.258 − 0.446i)12-s + (1.60 − 3.22i)13-s + (−1.23 − 0.331i)15-s + 4.96·16-s + 5.98·17-s + (4.19 + 1.12i)18-s + (0.726 − 2.71i)19-s + ⋯ |
L(s) = 1 | + (−0.838 + 0.838i)2-s + (0.318 + 0.184i)3-s − 0.404i·4-s + (−0.868 + 0.232i)5-s + (−0.421 + 0.112i)6-s + (−0.498 − 0.498i)8-s + (−0.432 − 0.748i)9-s + (0.532 − 0.922i)10-s + (−0.285 + 0.0766i)11-s + (0.0744 − 0.129i)12-s + (0.446 − 0.894i)13-s + (−0.319 − 0.0856i)15-s + 1.24·16-s + 1.45·17-s + (0.989 + 0.265i)18-s + (0.166 − 0.622i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.995−0.0982i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.995−0.0982i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.995−0.0982i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(509,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.995−0.0982i)
|
Particular Values
L(1) |
≈ |
0.713763+0.0351334i |
L(21) |
≈ |
0.713763+0.0351334i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−1.60+3.22i)T |
good | 2 | 1+(1.18−1.18i)T−2iT2 |
| 3 | 1+(−0.552−0.318i)T+(1.5+2.59i)T2 |
| 5 | 1+(1.94−0.520i)T+(4.33−2.5i)T2 |
| 11 | 1+(0.948−0.254i)T+(9.52−5.5i)T2 |
| 17 | 1−5.98T+17T2 |
| 19 | 1+(−0.726+2.71i)T+(−16.4−9.5i)T2 |
| 23 | 1−2.98iT−23T2 |
| 29 | 1+(−3.65−6.33i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−2.23+8.34i)T+(−26.8−15.5i)T2 |
| 37 | 1+(3.39+3.39i)T+37iT2 |
| 41 | 1+(−0.886+3.30i)T+(−35.5−20.5i)T2 |
| 43 | 1+(0.748+0.432i)T+(21.5+37.2i)T2 |
| 47 | 1+(−0.794−2.96i)T+(−40.7+23.5i)T2 |
| 53 | 1+(3.16+5.47i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−0.359+0.359i)T−59iT2 |
| 61 | 1+(−11.2+6.51i)T+(30.5−52.8i)T2 |
| 67 | 1+(−0.221−0.827i)T+(−58.0+33.5i)T2 |
| 71 | 1+(3.01+11.2i)T+(−61.4+35.5i)T2 |
| 73 | 1+(1.40+0.377i)T+(63.2+36.5i)T2 |
| 79 | 1+(−5.80+10.0i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−1.23−1.23i)T+83iT2 |
| 89 | 1+(5.67−5.67i)T−89iT2 |
| 97 | 1+(−12.0+3.23i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.29268674226072336150361126355, −9.505604128015299108113014046261, −8.677541696544061436437275668664, −7.898625464652720683541711098712, −7.42900572198446193350530195912, −6.32382185273409387981107166052, −5.38616893266321006500408656100, −3.68642725644974691687326264841, −3.14533246522692643076968967908, −0.58069891695821916258969007881,
1.20706068642651251545832153647, 2.52773460287174272471135043245, 3.60340444658368558162374376072, 4.94173385755474189528677323201, 6.06680484371880923756750602545, 7.47700421931175036470366442013, 8.330041101946419065681402596102, 8.616413151492541140182267881647, 9.908445410546681798341935893750, 10.42020971235078067320656638644