L(s) = 1 | + (0.0825 − 0.0825i)2-s + (−2.25 − 1.29i)3-s + 1.98i·4-s + (−1.70 + 0.456i)5-s + (−0.293 + 0.0785i)6-s + (0.329 + 0.329i)8-s + (1.87 + 3.25i)9-s + (−0.103 + 0.178i)10-s + (1.89 − 0.506i)11-s + (2.58 − 4.47i)12-s + (1.85 + 3.09i)13-s + (4.43 + 1.18i)15-s − 3.91·16-s − 4.27·17-s + (0.423 + 0.113i)18-s + (1.10 − 4.12i)19-s + ⋯ |
L(s) = 1 | + (0.0583 − 0.0583i)2-s + (−1.29 − 0.750i)3-s + 0.993i·4-s + (−0.762 + 0.204i)5-s + (−0.119 + 0.0320i)6-s + (0.116 + 0.116i)8-s + (0.625 + 1.08i)9-s + (−0.0325 + 0.0564i)10-s + (0.570 − 0.152i)11-s + (0.745 − 1.29i)12-s + (0.515 + 0.857i)13-s + (1.14 + 0.306i)15-s − 0.979·16-s − 1.03·17-s + (0.0997 + 0.0267i)18-s + (0.253 − 0.945i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.451+0.892i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.451+0.892i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.451+0.892i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(509,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.451+0.892i)
|
Particular Values
L(1) |
≈ |
0.204244−0.332237i |
L(21) |
≈ |
0.204244−0.332237i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−1.85−3.09i)T |
good | 2 | 1+(−0.0825+0.0825i)T−2iT2 |
| 3 | 1+(2.25+1.29i)T+(1.5+2.59i)T2 |
| 5 | 1+(1.70−0.456i)T+(4.33−2.5i)T2 |
| 11 | 1+(−1.89+0.506i)T+(9.52−5.5i)T2 |
| 17 | 1+4.27T+17T2 |
| 19 | 1+(−1.10+4.12i)T+(−16.4−9.5i)T2 |
| 23 | 1+6.39iT−23T2 |
| 29 | 1+(3.57+6.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.10+4.13i)T+(−26.8−15.5i)T2 |
| 37 | 1+(2.00+2.00i)T+37iT2 |
| 41 | 1+(−2.94+11.0i)T+(−35.5−20.5i)T2 |
| 43 | 1+(1.55+0.896i)T+(21.5+37.2i)T2 |
| 47 | 1+(−1.71−6.40i)T+(−40.7+23.5i)T2 |
| 53 | 1+(2.13+3.70i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1.19+1.19i)T−59iT2 |
| 61 | 1+(−2.66+1.54i)T+(30.5−52.8i)T2 |
| 67 | 1+(−0.00510−0.0190i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−1.23−4.59i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−0.954−0.255i)T+(63.2+36.5i)T2 |
| 79 | 1+(−2.96+5.14i)T+(−39.5−68.4i)T2 |
| 83 | 1+(9.87+9.87i)T+83iT2 |
| 89 | 1+(5.68−5.68i)T−89iT2 |
| 97 | 1+(14.2−3.82i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90479332367519476441647031550, −9.256933479145554993638506491570, −8.429424511511212521189682802605, −7.34800496496812920555209134679, −6.83398453642363304505605364565, −6.02246515085990435042817615505, −4.56873291885805171570181724707, −3.85315468450285957412962497633, −2.22882618532669364091370154725, −0.26963650482172148323046809431,
1.29825140219037848887732620286, 3.64596333818657275345147048770, 4.57665773711732733942581098342, 5.41437620965384616340465516102, 6.09242047140231035744516935942, 7.04926419149927532618378009806, 8.329132155619530814168342968958, 9.446624012125737354800206269729, 10.14863814427928669215826534270, 10.96134280338832096783120581021