L(s) = 1 | + (0.653 − 0.653i)2-s + (−0.988 − 0.570i)3-s + 1.14i·4-s + (3.82 − 1.02i)5-s + (−1.01 + 0.272i)6-s + (2.05 + 2.05i)8-s + (−0.848 − 1.47i)9-s + (1.82 − 3.16i)10-s + (−2.03 + 0.544i)11-s + (0.654 − 1.13i)12-s + (3.41 − 1.16i)13-s + (−4.36 − 1.16i)15-s + 0.391·16-s + 3.17·17-s + (−1.51 − 0.405i)18-s + (−0.302 + 1.12i)19-s + ⋯ |
L(s) = 1 | + (0.461 − 0.461i)2-s + (−0.570 − 0.329i)3-s + 0.573i·4-s + (1.71 − 0.458i)5-s + (−0.415 + 0.111i)6-s + (0.726 + 0.726i)8-s + (−0.282 − 0.490i)9-s + (0.578 − 1.00i)10-s + (−0.613 + 0.164i)11-s + (0.188 − 0.327i)12-s + (0.946 − 0.324i)13-s + (−1.12 − 0.301i)15-s + 0.0979·16-s + 0.769·17-s + (−0.357 − 0.0956i)18-s + (−0.0693 + 0.258i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.777+0.628i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.777+0.628i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.777+0.628i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(509,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.777+0.628i)
|
Particular Values
L(1) |
≈ |
2.00589−0.709057i |
L(21) |
≈ |
2.00589−0.709057i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−3.41+1.16i)T |
good | 2 | 1+(−0.653+0.653i)T−2iT2 |
| 3 | 1+(0.988+0.570i)T+(1.5+2.59i)T2 |
| 5 | 1+(−3.82+1.02i)T+(4.33−2.5i)T2 |
| 11 | 1+(2.03−0.544i)T+(9.52−5.5i)T2 |
| 17 | 1−3.17T+17T2 |
| 19 | 1+(0.302−1.12i)T+(−16.4−9.5i)T2 |
| 23 | 1−3.76iT−23T2 |
| 29 | 1+(0.584+1.01i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.30+4.88i)T+(−26.8−15.5i)T2 |
| 37 | 1+(−3.12−3.12i)T+37iT2 |
| 41 | 1+(−1.85+6.93i)T+(−35.5−20.5i)T2 |
| 43 | 1+(1.91+1.10i)T+(21.5+37.2i)T2 |
| 47 | 1+(3.00+11.2i)T+(−40.7+23.5i)T2 |
| 53 | 1+(2.44+4.23i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−0.173+0.173i)T−59iT2 |
| 61 | 1+(10.7−6.18i)T+(30.5−52.8i)T2 |
| 67 | 1+(−2.66−9.95i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−1.60−5.98i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−4.75−1.27i)T+(63.2+36.5i)T2 |
| 79 | 1+(−1.34+2.33i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−3.31−3.31i)T+83iT2 |
| 89 | 1+(4.91−4.91i)T−89iT2 |
| 97 | 1+(15.8−4.24i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.56875041127182467826077768617, −9.762086639668070617193954590921, −8.819992684449529719318146175482, −7.910546400501643727024582304116, −6.66236302783008192290593447297, −5.67813074171398156082239737789, −5.27115354419690166868316883103, −3.75854837299399375234557323570, −2.56447866009545757515211163742, −1.36727586594978507851610199146,
1.50220814380227645265497368635, 2.85111529516788332149216230814, 4.64457806164946105350975597140, 5.37223415759108494350198852610, 6.11044567155878617839509292876, 6.52277094605627721228788689580, 7.917144403414976944796898401518, 9.244996401146003339383368883312, 9.938222689934786718185303524377, 10.82945780129264237114006894637