Properties

Label 2-637-91.54-c1-0-27
Degree $2$
Conductor $637$
Sign $0.777 + 0.628i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.653 − 0.653i)2-s + (−0.988 − 0.570i)3-s + 1.14i·4-s + (3.82 − 1.02i)5-s + (−1.01 + 0.272i)6-s + (2.05 + 2.05i)8-s + (−0.848 − 1.47i)9-s + (1.82 − 3.16i)10-s + (−2.03 + 0.544i)11-s + (0.654 − 1.13i)12-s + (3.41 − 1.16i)13-s + (−4.36 − 1.16i)15-s + 0.391·16-s + 3.17·17-s + (−1.51 − 0.405i)18-s + (−0.302 + 1.12i)19-s + ⋯
L(s)  = 1  + (0.461 − 0.461i)2-s + (−0.570 − 0.329i)3-s + 0.573i·4-s + (1.71 − 0.458i)5-s + (−0.415 + 0.111i)6-s + (0.726 + 0.726i)8-s + (−0.282 − 0.490i)9-s + (0.578 − 1.00i)10-s + (−0.613 + 0.164i)11-s + (0.188 − 0.327i)12-s + (0.946 − 0.324i)13-s + (−1.12 − 0.301i)15-s + 0.0979·16-s + 0.769·17-s + (−0.357 − 0.0956i)18-s + (−0.0693 + 0.258i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.777 + 0.628i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.777 + 0.628i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $0.777 + 0.628i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (509, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ 0.777 + 0.628i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.00589 - 0.709057i\)
\(L(\frac12)\) \(\approx\) \(2.00589 - 0.709057i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (-3.41 + 1.16i)T \)
good2 \( 1 + (-0.653 + 0.653i)T - 2iT^{2} \)
3 \( 1 + (0.988 + 0.570i)T + (1.5 + 2.59i)T^{2} \)
5 \( 1 + (-3.82 + 1.02i)T + (4.33 - 2.5i)T^{2} \)
11 \( 1 + (2.03 - 0.544i)T + (9.52 - 5.5i)T^{2} \)
17 \( 1 - 3.17T + 17T^{2} \)
19 \( 1 + (0.302 - 1.12i)T + (-16.4 - 9.5i)T^{2} \)
23 \( 1 - 3.76iT - 23T^{2} \)
29 \( 1 + (0.584 + 1.01i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-1.30 + 4.88i)T + (-26.8 - 15.5i)T^{2} \)
37 \( 1 + (-3.12 - 3.12i)T + 37iT^{2} \)
41 \( 1 + (-1.85 + 6.93i)T + (-35.5 - 20.5i)T^{2} \)
43 \( 1 + (1.91 + 1.10i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (3.00 + 11.2i)T + (-40.7 + 23.5i)T^{2} \)
53 \( 1 + (2.44 + 4.23i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-0.173 + 0.173i)T - 59iT^{2} \)
61 \( 1 + (10.7 - 6.18i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-2.66 - 9.95i)T + (-58.0 + 33.5i)T^{2} \)
71 \( 1 + (-1.60 - 5.98i)T + (-61.4 + 35.5i)T^{2} \)
73 \( 1 + (-4.75 - 1.27i)T + (63.2 + 36.5i)T^{2} \)
79 \( 1 + (-1.34 + 2.33i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-3.31 - 3.31i)T + 83iT^{2} \)
89 \( 1 + (4.91 - 4.91i)T - 89iT^{2} \)
97 \( 1 + (15.8 - 4.24i)T + (84.0 - 48.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.56875041127182467826077768617, −9.762086639668070617193954590921, −8.819992684449529719318146175482, −7.910546400501643727024582304116, −6.66236302783008192290593447297, −5.67813074171398156082239737789, −5.27115354419690166868316883103, −3.75854837299399375234557323570, −2.56447866009545757515211163742, −1.36727586594978507851610199146, 1.50220814380227645265497368635, 2.85111529516788332149216230814, 4.64457806164946105350975597140, 5.37223415759108494350198852610, 6.11044567155878617839509292876, 6.52277094605627721228788689580, 7.917144403414976944796898401518, 9.244996401146003339383368883312, 9.938222689934786718185303524377, 10.82945780129264237114006894637

Graph of the $Z$-function along the critical line