L(s) = 1 | + (0.653 − 0.653i)2-s + (−0.988 − 0.570i)3-s + 1.14i·4-s + (3.82 − 1.02i)5-s + (−1.01 + 0.272i)6-s + (2.05 + 2.05i)8-s + (−0.848 − 1.47i)9-s + (1.82 − 3.16i)10-s + (−2.03 + 0.544i)11-s + (0.654 − 1.13i)12-s + (3.41 − 1.16i)13-s + (−4.36 − 1.16i)15-s + 0.391·16-s + 3.17·17-s + (−1.51 − 0.405i)18-s + (−0.302 + 1.12i)19-s + ⋯ |
L(s) = 1 | + (0.461 − 0.461i)2-s + (−0.570 − 0.329i)3-s + 0.573i·4-s + (1.71 − 0.458i)5-s + (−0.415 + 0.111i)6-s + (0.726 + 0.726i)8-s + (−0.282 − 0.490i)9-s + (0.578 − 1.00i)10-s + (−0.613 + 0.164i)11-s + (0.188 − 0.327i)12-s + (0.946 − 0.324i)13-s + (−1.12 − 0.301i)15-s + 0.0979·16-s + 0.769·17-s + (−0.357 − 0.0956i)18-s + (−0.0693 + 0.258i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.777 + 0.628i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.777 + 0.628i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00589 - 0.709057i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00589 - 0.709057i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.41 + 1.16i)T \) |
good | 2 | \( 1 + (-0.653 + 0.653i)T - 2iT^{2} \) |
| 3 | \( 1 + (0.988 + 0.570i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-3.82 + 1.02i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (2.03 - 0.544i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 - 3.17T + 17T^{2} \) |
| 19 | \( 1 + (0.302 - 1.12i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 3.76iT - 23T^{2} \) |
| 29 | \( 1 + (0.584 + 1.01i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.30 + 4.88i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (-3.12 - 3.12i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1.85 + 6.93i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (1.91 + 1.10i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.00 + 11.2i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (2.44 + 4.23i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.173 + 0.173i)T - 59iT^{2} \) |
| 61 | \( 1 + (10.7 - 6.18i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.66 - 9.95i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-1.60 - 5.98i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-4.75 - 1.27i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-1.34 + 2.33i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.31 - 3.31i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.91 - 4.91i)T - 89iT^{2} \) |
| 97 | \( 1 + (15.8 - 4.24i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56875041127182467826077768617, −9.762086639668070617193954590921, −8.819992684449529719318146175482, −7.910546400501643727024582304116, −6.66236302783008192290593447297, −5.67813074171398156082239737789, −5.27115354419690166868316883103, −3.75854837299399375234557323570, −2.56447866009545757515211163742, −1.36727586594978507851610199146,
1.50220814380227645265497368635, 2.85111529516788332149216230814, 4.64457806164946105350975597140, 5.37223415759108494350198852610, 6.11044567155878617839509292876, 6.52277094605627721228788689580, 7.917144403414976944796898401518, 9.244996401146003339383368883312, 9.938222689934786718185303524377, 10.82945780129264237114006894637