L(s) = 1 | + (1.22 + 2.11i)2-s + (−0.333 + 0.578i)3-s + (−1.99 + 3.45i)4-s + (0.455 + 0.788i)5-s − 1.63·6-s − 4.87·8-s + (1.27 + 2.21i)9-s + (−1.11 + 1.92i)10-s + (−1.83 + 3.18i)11-s + (−1.33 − 2.30i)12-s − 13-s − 0.607·15-s + (−1.97 − 3.42i)16-s + (3.59 − 6.22i)17-s + (−3.12 + 5.41i)18-s + (−0.989 − 1.71i)19-s + ⋯ |
L(s) = 1 | + (0.865 + 1.49i)2-s + (−0.192 + 0.333i)3-s + (−0.997 + 1.72i)4-s + (0.203 + 0.352i)5-s − 0.667·6-s − 1.72·8-s + (0.425 + 0.737i)9-s + (−0.352 + 0.610i)10-s + (−0.554 + 0.960i)11-s + (−0.384 − 0.666i)12-s − 0.277·13-s − 0.156·15-s + (−0.493 − 0.855i)16-s + (0.871 − 1.50i)17-s + (−0.736 + 1.27i)18-s + (−0.226 − 0.392i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.323993 - 1.98105i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.323993 - 1.98105i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (-1.22 - 2.11i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.333 - 0.578i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.455 - 0.788i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.83 - 3.18i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.59 + 6.22i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.989 + 1.71i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.298 - 0.516i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3.64T + 29T^{2} \) |
| 31 | \( 1 + (3.54 - 6.13i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.355 + 0.615i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 5.27T + 41T^{2} \) |
| 43 | \( 1 - 11.0T + 43T^{2} \) |
| 47 | \( 1 + (-6.05 - 10.4i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.72 + 9.91i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.79 + 8.30i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.49 - 6.04i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.614 - 1.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 11.3T + 71T^{2} \) |
| 73 | \( 1 + (-3.26 + 5.65i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.76 - 9.97i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 7.16T + 83T^{2} \) |
| 89 | \( 1 + (-6.42 - 11.1i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 9.09T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99771184634421125170585705967, −10.10241487302533065992884985546, −9.225675585604194263249880332712, −7.940106364815942595924173342021, −7.31466933166626526675765890112, −6.71579981810107386474730949479, −5.31012588225048534054257683097, −5.06868315370243369766181675224, −3.99414902810521792244796202135, −2.55212803839924667043143412570,
0.889740653057662034786035416057, 2.04800182541080329116087102410, 3.43137868067861434165354849843, 4.08859780134221568310393956222, 5.50625150631879163333383535671, 5.91149810246871844407854638259, 7.42144056693408264561366562974, 8.643557519210928867061624461225, 9.590253632991010591466616603021, 10.40394733412138908552717050890