Properties

Label 2-637-7.4-c1-0-10
Degree 22
Conductor 637637
Sign 0.947+0.318i-0.947 + 0.318i
Analytic cond. 5.086475.08647
Root an. cond. 2.255322.25532
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.22 + 2.11i)2-s + (−0.333 + 0.578i)3-s + (−1.99 + 3.45i)4-s + (0.455 + 0.788i)5-s − 1.63·6-s − 4.87·8-s + (1.27 + 2.21i)9-s + (−1.11 + 1.92i)10-s + (−1.83 + 3.18i)11-s + (−1.33 − 2.30i)12-s − 13-s − 0.607·15-s + (−1.97 − 3.42i)16-s + (3.59 − 6.22i)17-s + (−3.12 + 5.41i)18-s + (−0.989 − 1.71i)19-s + ⋯
L(s)  = 1  + (0.865 + 1.49i)2-s + (−0.192 + 0.333i)3-s + (−0.997 + 1.72i)4-s + (0.203 + 0.352i)5-s − 0.667·6-s − 1.72·8-s + (0.425 + 0.737i)9-s + (−0.352 + 0.610i)10-s + (−0.554 + 0.960i)11-s + (−0.384 − 0.666i)12-s − 0.277·13-s − 0.156·15-s + (−0.493 − 0.855i)16-s + (0.871 − 1.50i)17-s + (−0.736 + 1.27i)18-s + (−0.226 − 0.392i)19-s + ⋯

Functional equation

Λ(s)=(637s/2ΓC(s)L(s)=((0.947+0.318i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(637s/2ΓC(s+1/2)L(s)=((0.947+0.318i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 637637    =    72137^{2} \cdot 13
Sign: 0.947+0.318i-0.947 + 0.318i
Analytic conductor: 5.086475.08647
Root analytic conductor: 2.255322.25532
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ637(508,)\chi_{637} (508, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 637, ( :1/2), 0.947+0.318i)(2,\ 637,\ (\ :1/2),\ -0.947 + 0.318i)

Particular Values

L(1)L(1) \approx 0.3239931.98105i0.323993 - 1.98105i
L(12)L(\frac12) \approx 0.3239931.98105i0.323993 - 1.98105i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1+T 1 + T
good2 1+(1.222.11i)T+(1+1.73i)T2 1 + (-1.22 - 2.11i)T + (-1 + 1.73i)T^{2}
3 1+(0.3330.578i)T+(1.52.59i)T2 1 + (0.333 - 0.578i)T + (-1.5 - 2.59i)T^{2}
5 1+(0.4550.788i)T+(2.5+4.33i)T2 1 + (-0.455 - 0.788i)T + (-2.5 + 4.33i)T^{2}
11 1+(1.833.18i)T+(5.59.52i)T2 1 + (1.83 - 3.18i)T + (-5.5 - 9.52i)T^{2}
17 1+(3.59+6.22i)T+(8.514.7i)T2 1 + (-3.59 + 6.22i)T + (-8.5 - 14.7i)T^{2}
19 1+(0.989+1.71i)T+(9.5+16.4i)T2 1 + (0.989 + 1.71i)T + (-9.5 + 16.4i)T^{2}
23 1+(0.2980.516i)T+(11.5+19.9i)T2 1 + (-0.298 - 0.516i)T + (-11.5 + 19.9i)T^{2}
29 1+3.64T+29T2 1 + 3.64T + 29T^{2}
31 1+(3.546.13i)T+(15.526.8i)T2 1 + (3.54 - 6.13i)T + (-15.5 - 26.8i)T^{2}
37 1+(0.355+0.615i)T+(18.5+32.0i)T2 1 + (0.355 + 0.615i)T + (-18.5 + 32.0i)T^{2}
41 1+5.27T+41T2 1 + 5.27T + 41T^{2}
43 111.0T+43T2 1 - 11.0T + 43T^{2}
47 1+(6.0510.4i)T+(23.5+40.7i)T2 1 + (-6.05 - 10.4i)T + (-23.5 + 40.7i)T^{2}
53 1+(5.72+9.91i)T+(26.545.8i)T2 1 + (-5.72 + 9.91i)T + (-26.5 - 45.8i)T^{2}
59 1+(4.79+8.30i)T+(29.551.0i)T2 1 + (-4.79 + 8.30i)T + (-29.5 - 51.0i)T^{2}
61 1+(3.496.04i)T+(30.5+52.8i)T2 1 + (-3.49 - 6.04i)T + (-30.5 + 52.8i)T^{2}
67 1+(0.6141.06i)T+(33.558.0i)T2 1 + (0.614 - 1.06i)T + (-33.5 - 58.0i)T^{2}
71 111.3T+71T2 1 - 11.3T + 71T^{2}
73 1+(3.26+5.65i)T+(36.563.2i)T2 1 + (-3.26 + 5.65i)T + (-36.5 - 63.2i)T^{2}
79 1+(5.769.97i)T+(39.5+68.4i)T2 1 + (-5.76 - 9.97i)T + (-39.5 + 68.4i)T^{2}
83 1+7.16T+83T2 1 + 7.16T + 83T^{2}
89 1+(6.4211.1i)T+(44.5+77.0i)T2 1 + (-6.42 - 11.1i)T + (-44.5 + 77.0i)T^{2}
97 1+9.09T+97T2 1 + 9.09T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.99771184634421125170585705967, −10.10241487302533065992884985546, −9.225675585604194263249880332712, −7.940106364815942595924173342021, −7.31466933166626526675765890112, −6.71579981810107386474730949479, −5.31012588225048534054257683097, −5.06868315370243369766181675224, −3.99414902810521792244796202135, −2.55212803839924667043143412570, 0.889740653057662034786035416057, 2.04800182541080329116087102410, 3.43137868067861434165354849843, 4.08859780134221568310393956222, 5.50625150631879163333383535671, 5.91149810246871844407854638259, 7.42144056693408264561366562974, 8.643557519210928867061624461225, 9.590253632991010591466616603021, 10.40394733412138908552717050890

Graph of the ZZ-function along the critical line