L(s) = 1 | + (−0.5 − 0.866i)2-s + (−1.5 − 2.59i)3-s + (0.500 − 0.866i)4-s − 3·5-s + (−1.5 + 2.59i)6-s − 3·8-s + (−3 + 5.19i)9-s + (1.5 + 2.59i)10-s + (1.5 + 2.59i)11-s − 3·12-s + (1 − 3.46i)13-s + (4.5 + 7.79i)15-s + (0.500 + 0.866i)16-s + (−1 + 1.73i)17-s + 6·18-s + (−0.5 + 0.866i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.866 − 1.49i)3-s + (0.250 − 0.433i)4-s − 1.34·5-s + (−0.612 + 1.06i)6-s − 1.06·8-s + (−1 + 1.73i)9-s + (0.474 + 0.821i)10-s + (0.452 + 0.783i)11-s − 0.866·12-s + (0.277 − 0.960i)13-s + (1.16 + 2.01i)15-s + (0.125 + 0.216i)16-s + (−0.242 + 0.420i)17-s + 1.41·18-s + (−0.114 + 0.198i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 - 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 - 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-1 + 3.46i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.5 + 2.59i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 3T + 5T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1 - 1.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.5 + 6.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3T + 31T^{2} \) |
| 37 | \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.5 + 6.06i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + T + 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.5 - 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 2.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.5 - 11.2i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 13T + 73T^{2} \) |
| 79 | \( 1 + 3T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.5 - 4.33i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11119986112905739488476531203, −8.782157788270012433070236009096, −7.79567633373124016427401213919, −7.20892396848169732998825106118, −6.26385727754423665528886900574, −5.46005584618270116139243791811, −3.94114065870228253874817188542, −2.39667627224644028421078766268, −1.18585911043870389244667343960, 0,
3.33453984966480936188307050410, 3.91578565359133822835240984392, 4.89627513052537269191172363045, 6.08453405277062383756315652768, 6.89395633091701794443273327264, 7.926414403291826510603158269533, 8.953065874571569495482158931145, 9.319309177067364670683997106943, 10.80761314769465912166222247823