Properties

Label 2-637-13.3-c1-0-41
Degree $2$
Conductor $637$
Sign $0.872 - 0.488i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−1.5 − 2.59i)3-s + (0.500 − 0.866i)4-s − 3·5-s + (−1.5 + 2.59i)6-s − 3·8-s + (−3 + 5.19i)9-s + (1.5 + 2.59i)10-s + (1.5 + 2.59i)11-s − 3·12-s + (1 − 3.46i)13-s + (4.5 + 7.79i)15-s + (0.500 + 0.866i)16-s + (−1 + 1.73i)17-s + 6·18-s + (−0.5 + 0.866i)19-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.866 − 1.49i)3-s + (0.250 − 0.433i)4-s − 1.34·5-s + (−0.612 + 1.06i)6-s − 1.06·8-s + (−1 + 1.73i)9-s + (0.474 + 0.821i)10-s + (0.452 + 0.783i)11-s − 0.866·12-s + (0.277 − 0.960i)13-s + (1.16 + 2.01i)15-s + (0.125 + 0.216i)16-s + (−0.242 + 0.420i)17-s + 1.41·18-s + (−0.114 + 0.198i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 - 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 - 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $0.872 - 0.488i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (393, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ 0.872 - 0.488i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (-1 + 3.46i)T \)
good2 \( 1 + (0.5 + 0.866i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (1.5 + 2.59i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + 3T + 5T^{2} \)
11 \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (1 - 1.73i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.5 - 0.866i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (3.5 + 6.06i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + 3T + 31T^{2} \)
37 \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-3.5 + 6.06i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + T + 47T^{2} \)
53 \( 1 - 3T + 53T^{2} \)
59 \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (6.5 - 11.2i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-1.5 - 2.59i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (6.5 - 11.2i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 - 13T + 73T^{2} \)
79 \( 1 + 3T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (2.5 - 4.33i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11119986112905739488476531203, −8.782157788270012433070236009096, −7.79567633373124016427401213919, −7.20892396848169732998825106118, −6.26385727754423665528886900574, −5.46005584618270116139243791811, −3.94114065870228253874817188542, −2.39667627224644028421078766268, −1.18585911043870389244667343960, 0, 3.33453984966480936188307050410, 3.91578565359133822835240984392, 4.89627513052537269191172363045, 6.08453405277062383756315652768, 6.89395633091701794443273327264, 7.926414403291826510603158269533, 8.953065874571569495482158931145, 9.319309177067364670683997106943, 10.80761314769465912166222247823

Graph of the $Z$-function along the critical line