L(s) = 1 | + (−0.5 − 0.866i)2-s + (−1.5 − 2.59i)3-s + (0.500 − 0.866i)4-s − 3·5-s + (−1.5 + 2.59i)6-s − 3·8-s + (−3 + 5.19i)9-s + (1.5 + 2.59i)10-s + (1.5 + 2.59i)11-s − 3·12-s + (1 − 3.46i)13-s + (4.5 + 7.79i)15-s + (0.500 + 0.866i)16-s + (−1 + 1.73i)17-s + 6·18-s + (−0.5 + 0.866i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.866 − 1.49i)3-s + (0.250 − 0.433i)4-s − 1.34·5-s + (−0.612 + 1.06i)6-s − 1.06·8-s + (−1 + 1.73i)9-s + (0.474 + 0.821i)10-s + (0.452 + 0.783i)11-s − 0.866·12-s + (0.277 − 0.960i)13-s + (1.16 + 2.01i)15-s + (0.125 + 0.216i)16-s + (−0.242 + 0.420i)17-s + 1.41·18-s + (−0.114 + 0.198i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.872−0.488i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.872−0.488i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.872−0.488i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(393,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 637, ( :1/2), 0.872−0.488i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−1+3.46i)T |
good | 2 | 1+(0.5+0.866i)T+(−1+1.73i)T2 |
| 3 | 1+(1.5+2.59i)T+(−1.5+2.59i)T2 |
| 5 | 1+3T+5T2 |
| 11 | 1+(−1.5−2.59i)T+(−5.5+9.52i)T2 |
| 17 | 1+(1−1.73i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.5−0.866i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1+(3.5+6.06i)T+(−14.5+25.1i)T2 |
| 31 | 1+3T+31T2 |
| 37 | 1+(1+1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.5−2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.5+6.06i)T+(−21.5−37.2i)T2 |
| 47 | 1+T+47T2 |
| 53 | 1−3T+53T2 |
| 59 | 1+(2−3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.5−11.2i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.5−2.59i)T+(−33.5+58.0i)T2 |
| 71 | 1+(6.5−11.2i)T+(−35.5−61.4i)T2 |
| 73 | 1−13T+73T2 |
| 79 | 1+3T+79T2 |
| 83 | 1+83T2 |
| 89 | 1+(−3−5.19i)T+(−44.5+77.0i)T2 |
| 97 | 1+(2.5−4.33i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11119986112905739488476531203, −8.782157788270012433070236009096, −7.79567633373124016427401213919, −7.20892396848169732998825106118, −6.26385727754423665528886900574, −5.46005584618270116139243791811, −3.94114065870228253874817188542, −2.39667627224644028421078766268, −1.18585911043870389244667343960, 0,
3.33453984966480936188307050410, 3.91578565359133822835240984392, 4.89627513052537269191172363045, 6.08453405277062383756315652768, 6.89395633091701794443273327264, 7.926414403291826510603158269533, 8.953065874571569495482158931145, 9.319309177067364670683997106943, 10.80761314769465912166222247823