L(s) = 1 | − 4·2-s + 14·4-s − 48·8-s + 8·9-s − 4·11-s + 129·16-s − 32·18-s + 16·22-s + 12·23-s + 8·25-s + 16·29-s − 336·32-s + 112·36-s + 8·37-s − 12·43-s − 56·44-s − 48·46-s − 32·50-s − 24·53-s − 64·58-s + 834·64-s − 4·67-s − 24·71-s − 384·72-s − 32·74-s − 56·79-s + 34·81-s + ⋯ |
L(s) = 1 | − 2.82·2-s + 7·4-s − 16.9·8-s + 8/3·9-s − 1.20·11-s + 32.2·16-s − 7.54·18-s + 3.41·22-s + 2.50·23-s + 8/5·25-s + 2.97·29-s − 59.3·32-s + 56/3·36-s + 1.31·37-s − 1.82·43-s − 8.44·44-s − 7.07·46-s − 4.52·50-s − 3.29·53-s − 8.40·58-s + 104.·64-s − 0.488·67-s − 2.84·71-s − 45.2·72-s − 3.71·74-s − 6.30·79-s + 34/9·81-s + ⋯ |
Λ(s)=(=((716⋅138)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((716⋅138)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4108065093 |
L(21) |
≈ |
0.4108065093 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+20T2+231T4+20p2T6+p4T8 |
good | 2 | (1+T−T2+pT3+p2T4)4 |
| 3 | (1−4T2+7T4−4p2T6+p4T8)2 |
| 5 | (1−4T2+31T4−4p2T6+p4T8)2 |
| 11 | (1+2T+4T2−4pT3−15pT4−4p2T5+4p2T6+2p3T7+p4T8)2 |
| 17 | 1−36T2+601T4−4212T6+24960T8−4212p2T10+601p4T12−36p6T14+p8T16 |
| 19 | (1−30T2+539T4−30p2T6+p4T8)2 |
| 23 | (1−6T+4T2+84T3−333T4+84pT5+4p2T6−6p3T7+p4T8)2 |
| 29 | (1−8T+13T2+56T3−96T4+56pT5+13p2T6−8p3T7+p4T8)2 |
| 31 | (1+60T2+p2T4)4 |
| 37 | (1−4T−39T2+76T3+1064T4+76pT5−39p2T6−4p3T7+p4T8)2 |
| 41 | 1−60T2+1201T4+57780T6−3122160T8+57780p2T10+1201p4T12−60p6T14+p8T16 |
| 43 | (1+6T−36T2−84T3+1787T4−84pT5−36p2T6+6p3T7+p4T8)2 |
| 47 | (1+86T2+p2T4)4 |
| 53 | (1+6T+23T2+6pT3+p2T4)4 |
| 59 | 1−80T2+3726T4+343040T6−27245485T8+343040p2T10+3726p4T12−80p6T14+p8T16 |
| 61 | 1−172T2+15873T4−1078268T6+64063616T8−1078268p2T10+15873p4T12−172p6T14+p8T16 |
| 67 | (1+2T−108T2−44T3+7787T4−44pT5−108p2T6+2p3T7+p4T8)2 |
| 71 | (1+6T−35T2+6pT3+p2T4)4 |
| 73 | (1+100T2+127pT4+100p2T6+p4T8)2 |
| 79 | (1+14T+184T2+14pT3+p2T4)4 |
| 83 | (1+68T2+p2T4)4 |
| 89 | 1+16T2−14178T4−22528T6+143570339T8−22528p2T10−14178p4T12+16p6T14+p8T16 |
| 97 | (1−176T2+21567T4−176p2T6+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.71437182543643194575479475513, −4.63446522518492835427187290604, −4.38238361967451160998811537737, −4.01453366613151528631089594806, −3.97218738204525399490237577974, −3.93042181009860201554773652978, −3.57910202067471369815569415453, −3.18876440264667660329093342746, −3.17073437718250360058143175614, −3.15993074784555366260208913196, −3.03905272948381252521085574597, −2.99003773010858624601410018975, −2.82150506863908742318423780555, −2.65024334726365737682228740939, −2.61430168286375432095907888604, −2.46150903536508792741100307748, −2.05312526508072952704541987436, −1.88022673012806132182412890956, −1.83045509365056935015039331927, −1.45609047296740185031699039074, −1.38600325544799745284109894002, −1.14423458857019977662047049032, −0.977760354114844897107363975100, −0.53232870906208110014845274271, −0.18581199578397290421494502076,
0.18581199578397290421494502076, 0.53232870906208110014845274271, 0.977760354114844897107363975100, 1.14423458857019977662047049032, 1.38600325544799745284109894002, 1.45609047296740185031699039074, 1.83045509365056935015039331927, 1.88022673012806132182412890956, 2.05312526508072952704541987436, 2.46150903536508792741100307748, 2.61430168286375432095907888604, 2.65024334726365737682228740939, 2.82150506863908742318423780555, 2.99003773010858624601410018975, 3.03905272948381252521085574597, 3.15993074784555366260208913196, 3.17073437718250360058143175614, 3.18876440264667660329093342746, 3.57910202067471369815569415453, 3.93042181009860201554773652978, 3.97218738204525399490237577974, 4.01453366613151528631089594806, 4.38238361967451160998811537737, 4.63446522518492835427187290604, 4.71437182543643194575479475513
Plot not available for L-functions of degree greater than 10.