Properties

Label 16-637e8-1.1-c1e8-0-1
Degree 1616
Conductor 2.711×10222.711\times 10^{22}
Sign 11
Analytic cond. 448056.448056.
Root an. cond. 2.255322.25532
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 14·4-s − 48·8-s + 8·9-s − 4·11-s + 129·16-s − 32·18-s + 16·22-s + 12·23-s + 8·25-s + 16·29-s − 336·32-s + 112·36-s + 8·37-s − 12·43-s − 56·44-s − 48·46-s − 32·50-s − 24·53-s − 64·58-s + 834·64-s − 4·67-s − 24·71-s − 384·72-s − 32·74-s − 56·79-s + 34·81-s + ⋯
L(s)  = 1  − 2.82·2-s + 7·4-s − 16.9·8-s + 8/3·9-s − 1.20·11-s + 32.2·16-s − 7.54·18-s + 3.41·22-s + 2.50·23-s + 8/5·25-s + 2.97·29-s − 59.3·32-s + 56/3·36-s + 1.31·37-s − 1.82·43-s − 8.44·44-s − 7.07·46-s − 4.52·50-s − 3.29·53-s − 8.40·58-s + 104.·64-s − 0.488·67-s − 2.84·71-s − 45.2·72-s − 3.71·74-s − 6.30·79-s + 34/9·81-s + ⋯

Functional equation

Λ(s)=((716138)s/2ΓC(s)8L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{16} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((716138)s/2ΓC(s+1/2)8L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{16} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1616
Conductor: 7161387^{16} \cdot 13^{8}
Sign: 11
Analytic conductor: 448056.448056.
Root analytic conductor: 2.255322.25532
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (16, 716138, ( :[1/2]8), 1)(16,\ 7^{16} \cdot 13^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )

Particular Values

L(1)L(1) \approx 0.41080650930.4108065093
L(12)L(\frac12) \approx 0.41080650930.4108065093
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1+20T2+231T4+20p2T6+p4T8 1 + 20 T^{2} + 231 T^{4} + 20 p^{2} T^{6} + p^{4} T^{8}
good2 (1+TT2+pT3+p2T4)4 ( 1 + T - T^{2} + p T^{3} + p^{2} T^{4} )^{4}
3 (14T2+7T44p2T6+p4T8)2 ( 1 - 4 T^{2} + 7 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} )^{2}
5 (14T2+31T44p2T6+p4T8)2 ( 1 - 4 T^{2} + 31 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} )^{2}
11 (1+2T+4T24pT315pT44p2T5+4p2T6+2p3T7+p4T8)2 ( 1 + 2 T + 4 T^{2} - 4 p T^{3} - 15 p T^{4} - 4 p^{2} T^{5} + 4 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} )^{2}
17 136T2+601T44212T6+24960T84212p2T10+601p4T1236p6T14+p8T16 1 - 36 T^{2} + 601 T^{4} - 4212 T^{6} + 24960 T^{8} - 4212 p^{2} T^{10} + 601 p^{4} T^{12} - 36 p^{6} T^{14} + p^{8} T^{16}
19 (130T2+539T430p2T6+p4T8)2 ( 1 - 30 T^{2} + 539 T^{4} - 30 p^{2} T^{6} + p^{4} T^{8} )^{2}
23 (16T+4T2+84T3333T4+84pT5+4p2T66p3T7+p4T8)2 ( 1 - 6 T + 4 T^{2} + 84 T^{3} - 333 T^{4} + 84 p T^{5} + 4 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} )^{2}
29 (18T+13T2+56T396T4+56pT5+13p2T68p3T7+p4T8)2 ( 1 - 8 T + 13 T^{2} + 56 T^{3} - 96 T^{4} + 56 p T^{5} + 13 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} )^{2}
31 (1+60T2+p2T4)4 ( 1 + 60 T^{2} + p^{2} T^{4} )^{4}
37 (14T39T2+76T3+1064T4+76pT539p2T64p3T7+p4T8)2 ( 1 - 4 T - 39 T^{2} + 76 T^{3} + 1064 T^{4} + 76 p T^{5} - 39 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2}
41 160T2+1201T4+57780T63122160T8+57780p2T10+1201p4T1260p6T14+p8T16 1 - 60 T^{2} + 1201 T^{4} + 57780 T^{6} - 3122160 T^{8} + 57780 p^{2} T^{10} + 1201 p^{4} T^{12} - 60 p^{6} T^{14} + p^{8} T^{16}
43 (1+6T36T284T3+1787T484pT536p2T6+6p3T7+p4T8)2 ( 1 + 6 T - 36 T^{2} - 84 T^{3} + 1787 T^{4} - 84 p T^{5} - 36 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} )^{2}
47 (1+86T2+p2T4)4 ( 1 + 86 T^{2} + p^{2} T^{4} )^{4}
53 (1+6T+23T2+6pT3+p2T4)4 ( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{4}
59 180T2+3726T4+343040T627245485T8+343040p2T10+3726p4T1280p6T14+p8T16 1 - 80 T^{2} + 3726 T^{4} + 343040 T^{6} - 27245485 T^{8} + 343040 p^{2} T^{10} + 3726 p^{4} T^{12} - 80 p^{6} T^{14} + p^{8} T^{16}
61 1172T2+15873T41078268T6+64063616T81078268p2T10+15873p4T12172p6T14+p8T16 1 - 172 T^{2} + 15873 T^{4} - 1078268 T^{6} + 64063616 T^{8} - 1078268 p^{2} T^{10} + 15873 p^{4} T^{12} - 172 p^{6} T^{14} + p^{8} T^{16}
67 (1+2T108T244T3+7787T444pT5108p2T6+2p3T7+p4T8)2 ( 1 + 2 T - 108 T^{2} - 44 T^{3} + 7787 T^{4} - 44 p T^{5} - 108 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} )^{2}
71 (1+6T35T2+6pT3+p2T4)4 ( 1 + 6 T - 35 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{4}
73 (1+100T2+127pT4+100p2T6+p4T8)2 ( 1 + 100 T^{2} + 127 p T^{4} + 100 p^{2} T^{6} + p^{4} T^{8} )^{2}
79 (1+14T+184T2+14pT3+p2T4)4 ( 1 + 14 T + 184 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{4}
83 (1+68T2+p2T4)4 ( 1 + 68 T^{2} + p^{2} T^{4} )^{4}
89 1+16T214178T422528T6+143570339T822528p2T1014178p4T12+16p6T14+p8T16 1 + 16 T^{2} - 14178 T^{4} - 22528 T^{6} + 143570339 T^{8} - 22528 p^{2} T^{10} - 14178 p^{4} T^{12} + 16 p^{6} T^{14} + p^{8} T^{16}
97 (1176T2+21567T4176p2T6+p4T8)2 ( 1 - 176 T^{2} + 21567 T^{4} - 176 p^{2} T^{6} + p^{4} T^{8} )^{2}
show more
show less
   L(s)=p j=116(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−4.71437182543643194575479475513, −4.63446522518492835427187290604, −4.38238361967451160998811537737, −4.01453366613151528631089594806, −3.97218738204525399490237577974, −3.93042181009860201554773652978, −3.57910202067471369815569415453, −3.18876440264667660329093342746, −3.17073437718250360058143175614, −3.15993074784555366260208913196, −3.03905272948381252521085574597, −2.99003773010858624601410018975, −2.82150506863908742318423780555, −2.65024334726365737682228740939, −2.61430168286375432095907888604, −2.46150903536508792741100307748, −2.05312526508072952704541987436, −1.88022673012806132182412890956, −1.83045509365056935015039331927, −1.45609047296740185031699039074, −1.38600325544799745284109894002, −1.14423458857019977662047049032, −0.977760354114844897107363975100, −0.53232870906208110014845274271, −0.18581199578397290421494502076, 0.18581199578397290421494502076, 0.53232870906208110014845274271, 0.977760354114844897107363975100, 1.14423458857019977662047049032, 1.38600325544799745284109894002, 1.45609047296740185031699039074, 1.83045509365056935015039331927, 1.88022673012806132182412890956, 2.05312526508072952704541987436, 2.46150903536508792741100307748, 2.61430168286375432095907888604, 2.65024334726365737682228740939, 2.82150506863908742318423780555, 2.99003773010858624601410018975, 3.03905272948381252521085574597, 3.15993074784555366260208913196, 3.17073437718250360058143175614, 3.18876440264667660329093342746, 3.57910202067471369815569415453, 3.93042181009860201554773652978, 3.97218738204525399490237577974, 4.01453366613151528631089594806, 4.38238361967451160998811537737, 4.63446522518492835427187290604, 4.71437182543643194575479475513

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.