L(s) = 1 | + (−1.15 − 1.99i)2-s + (1.08 + 1.87i)3-s + (−1.65 + 2.86i)4-s − 2.16·5-s + (2.49 − 4.32i)6-s + 2.99·8-s + (−0.848 + 1.46i)9-s + (2.49 + 4.32i)10-s + (−2.45 − 4.25i)11-s − 7.15·12-s + (1.41 + 3.31i)13-s + (−2.34 − 4.06i)15-s + (−0.151 − 0.262i)16-s + (3.57 − 6.19i)17-s + 3.90·18-s + (1.08 − 1.87i)19-s + ⋯ |
L(s) = 1 | + (−0.814 − 1.41i)2-s + (0.625 + 1.08i)3-s + (−0.825 + 1.43i)4-s − 0.969·5-s + (1.01 − 1.76i)6-s + 1.06·8-s + (−0.282 + 0.489i)9-s + (0.789 + 1.36i)10-s + (−0.739 − 1.28i)11-s − 2.06·12-s + (0.391 + 0.920i)13-s + (−0.606 − 1.05i)15-s + (−0.0378 − 0.0655i)16-s + (0.868 − 1.50i)17-s + 0.921·18-s + (0.248 − 0.430i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.367 + 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.367 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.448164 - 0.659225i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.448164 - 0.659225i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-1.41 - 3.31i)T \) |
good | 2 | \( 1 + (1.15 + 1.99i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.08 - 1.87i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 2.16T + 5T^{2} \) |
| 11 | \( 1 + (2.45 + 4.25i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.57 + 6.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.08 + 1.87i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.302 - 0.524i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.15 - 1.99i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.15T + 31T^{2} \) |
| 37 | \( 1 + (4.30 + 7.45i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.99 + 8.64i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.25 + 10.8i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 1.51T + 47T^{2} \) |
| 53 | \( 1 - 2.39T + 53T^{2} \) |
| 59 | \( 1 + (1.41 - 2.44i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.16 + 3.75i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2 - 3.46i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 4.33T + 73T^{2} \) |
| 79 | \( 1 + 6.60T + 79T^{2} \) |
| 83 | \( 1 + 2.82T + 83T^{2} \) |
| 89 | \( 1 + (-3.25 - 5.63i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.83 - 11.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39550117063756666459622350137, −9.472085181666232473027127419445, −8.855536306809945186006042545372, −8.266556239537740206000380291653, −7.19596858595444057969939025397, −5.35580153517349633868254901946, −4.07281619270835394406863968169, −3.43497354338087349875385977757, −2.63077672105226735147720685904, −0.60362787116950152001889747997,
1.29433465208163791353622359503, 3.03620462983589682119790021823, 4.60988042769433069862696946943, 5.87342808096711618060379949318, 6.76181965864321330459666404045, 7.64813368552144983755561754417, 8.088945163810389734116506738608, 8.328687785244360579516862348051, 9.829613788433693205944662800233, 10.39469348034162513396499151482