Properties

Label 2-637-13.3-c1-0-31
Degree 22
Conductor 637637
Sign 0.281+0.959i0.281 + 0.959i
Analytic cond. 5.086475.08647
Root an. cond. 2.255322.25532
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.134 + 0.232i)2-s + (0.571 + 0.989i)3-s + (0.964 − 1.66i)4-s − 2.56·5-s + (−0.153 + 0.265i)6-s + 1.05·8-s + (0.846 − 1.46i)9-s + (−0.343 − 0.594i)10-s + (−1.97 − 3.41i)11-s + 2.20·12-s + (−3.15 − 1.74i)13-s + (−1.46 − 2.53i)15-s + (−1.78 − 3.09i)16-s + (−0.392 + 0.679i)17-s + 0.454·18-s + (3.74 − 6.49i)19-s + ⋯
L(s)  = 1  + (0.0947 + 0.164i)2-s + (0.329 + 0.571i)3-s + (0.482 − 0.834i)4-s − 1.14·5-s + (−0.0625 + 0.108i)6-s + 0.372·8-s + (0.282 − 0.488i)9-s + (−0.108 − 0.188i)10-s + (−0.594 − 1.03i)11-s + 0.636·12-s + (−0.874 − 0.484i)13-s + (−0.378 − 0.654i)15-s + (−0.446 − 0.773i)16-s + (−0.0952 + 0.164i)17-s + 0.107·18-s + (0.859 − 1.48i)19-s + ⋯

Functional equation

Λ(s)=(637s/2ΓC(s)L(s)=((0.281+0.959i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.281 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(637s/2ΓC(s+1/2)L(s)=((0.281+0.959i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.281 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 637637    =    72137^{2} \cdot 13
Sign: 0.281+0.959i0.281 + 0.959i
Analytic conductor: 5.086475.08647
Root analytic conductor: 2.255322.25532
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ637(393,)\chi_{637} (393, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 637, ( :1/2), 0.281+0.959i)(2,\ 637,\ (\ :1/2),\ 0.281 + 0.959i)

Particular Values

L(1)L(1) \approx 1.072760.802886i1.07276 - 0.802886i
L(12)L(\frac12) \approx 1.072760.802886i1.07276 - 0.802886i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1+(3.15+1.74i)T 1 + (3.15 + 1.74i)T
good2 1+(0.1340.232i)T+(1+1.73i)T2 1 + (-0.134 - 0.232i)T + (-1 + 1.73i)T^{2}
3 1+(0.5710.989i)T+(1.5+2.59i)T2 1 + (-0.571 - 0.989i)T + (-1.5 + 2.59i)T^{2}
5 1+2.56T+5T2 1 + 2.56T + 5T^{2}
11 1+(1.97+3.41i)T+(5.5+9.52i)T2 1 + (1.97 + 3.41i)T + (-5.5 + 9.52i)T^{2}
17 1+(0.3920.679i)T+(8.514.7i)T2 1 + (0.392 - 0.679i)T + (-8.5 - 14.7i)T^{2}
19 1+(3.74+6.49i)T+(9.516.4i)T2 1 + (-3.74 + 6.49i)T + (-9.5 - 16.4i)T^{2}
23 1+(3.976.88i)T+(11.5+19.9i)T2 1 + (-3.97 - 6.88i)T + (-11.5 + 19.9i)T^{2}
29 1+(1.17+2.03i)T+(14.5+25.1i)T2 1 + (1.17 + 2.03i)T + (-14.5 + 25.1i)T^{2}
31 1+2.55T+31T2 1 + 2.55T + 31T^{2}
37 1+(3.37+5.85i)T+(18.5+32.0i)T2 1 + (3.37 + 5.85i)T + (-18.5 + 32.0i)T^{2}
41 1+(1.212.11i)T+(20.5+35.5i)T2 1 + (-1.21 - 2.11i)T + (-20.5 + 35.5i)T^{2}
43 1+(1.12+1.94i)T+(21.537.2i)T2 1 + (-1.12 + 1.94i)T + (-21.5 - 37.2i)T^{2}
47 11.31T+47T2 1 - 1.31T + 47T^{2}
53 19.27T+53T2 1 - 9.27T + 53T^{2}
59 1+(4.48+7.76i)T+(29.551.0i)T2 1 + (-4.48 + 7.76i)T + (-29.5 - 51.0i)T^{2}
61 1+(4.728.18i)T+(30.552.8i)T2 1 + (4.72 - 8.18i)T + (-30.5 - 52.8i)T^{2}
67 1+(0.6761.17i)T+(33.5+58.0i)T2 1 + (-0.676 - 1.17i)T + (-33.5 + 58.0i)T^{2}
71 1+(6.1510.6i)T+(35.561.4i)T2 1 + (6.15 - 10.6i)T + (-35.5 - 61.4i)T^{2}
73 10.768T+73T2 1 - 0.768T + 73T^{2}
79 16.19T+79T2 1 - 6.19T + 79T^{2}
83 1+1.07T+83T2 1 + 1.07T + 83T^{2}
89 1+(3.83+6.63i)T+(44.5+77.0i)T2 1 + (3.83 + 6.63i)T + (-44.5 + 77.0i)T^{2}
97 1+(1.18+2.05i)T+(48.584.0i)T2 1 + (-1.18 + 2.05i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.43987396738645960755460201715, −9.550430109277602844138019933427, −8.790756744976507445952713060216, −7.52164330670314438368212668847, −7.10410100987095381520116331331, −5.67561051926466589681581648015, −4.92701377484401482720796342877, −3.72065583743998813947118504416, −2.77443250128593687561481278172, −0.67176075289715635544913054514, 1.91465519376068749623184461451, 2.93681885303542192752732179998, 4.12055322569979237837222866411, 4.96739541670003912933788044764, 6.78957812018491143009843591386, 7.45880398169572080421942994470, 7.79837898838485130080248198842, 8.709473688446654480274541762303, 10.06184411355804235076940243072, 10.85322422558220201522926752692

Graph of the ZZ-function along the critical line