L(s) = 1 | + (0.760 − 1.31i)2-s + (−1.06 + 1.84i)3-s + (−0.156 − 0.270i)4-s − 0.589·5-s + (1.61 + 2.80i)6-s + 2.56·8-s + (−0.760 − 1.31i)9-s + (−0.448 + 0.776i)10-s + (−0.760 + 1.31i)11-s + 0.664·12-s + (−3.32 + 1.39i)13-s + (0.626 − 1.08i)15-s + (2.26 − 3.92i)16-s + (2.39 + 4.15i)17-s − 2.31·18-s + (0.841 + 1.45i)19-s + ⋯ |
L(s) = 1 | + (0.537 − 0.931i)2-s + (−0.613 + 1.06i)3-s + (−0.0781 − 0.135i)4-s − 0.263·5-s + (0.660 + 1.14i)6-s + 0.907·8-s + (−0.253 − 0.439i)9-s + (−0.141 + 0.245i)10-s + (−0.229 + 0.397i)11-s + 0.191·12-s + (−0.922 + 0.386i)13-s + (0.161 − 0.280i)15-s + (0.565 − 0.980i)16-s + (0.581 + 1.00i)17-s − 0.545·18-s + (0.193 + 0.334i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.384−0.922i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.384−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.384−0.922i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(295,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.384−0.922i)
|
Particular Values
L(1) |
≈ |
1.19100+0.793666i |
L(21) |
≈ |
1.19100+0.793666i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(3.32−1.39i)T |
good | 2 | 1+(−0.760+1.31i)T+(−1−1.73i)T2 |
| 3 | 1+(1.06−1.84i)T+(−1.5−2.59i)T2 |
| 5 | 1+0.589T+5T2 |
| 11 | 1+(0.760−1.31i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−2.39−4.15i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.841−1.45i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.886−1.53i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.44−5.96i)T+(−14.5−25.1i)T2 |
| 31 | 1−6.08T+31T2 |
| 37 | 1+(0.704−1.22i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−0.677+1.17i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−5.77−10.0i)T+(−21.5+37.2i)T2 |
| 47 | 1−0.464T+47T2 |
| 53 | 1−8.24T+53T2 |
| 59 | 1+(5.93+10.2i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1.24−2.14i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−3.78+6.55i)T+(−33.5−58.0i)T2 |
| 71 | 1+(3.30+5.71i)T+(−35.5+61.4i)T2 |
| 73 | 1−16.3T+73T2 |
| 79 | 1+14.9T+79T2 |
| 83 | 1+10.1T+83T2 |
| 89 | 1+(−8.24+14.2i)T+(−44.5−77.0i)T2 |
| 97 | 1+(0.486+0.843i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83792271760549351377683655653, −10.07530471665828623844191563603, −9.590834576514112787267966791358, −8.072086312271248416643421007843, −7.28766277332740391763409173554, −5.83117510110445585152383349944, −4.85252188583718203242907420173, −4.18959726849041110709906162794, −3.29057157443323716982563814079, −1.87272041631664334366659867596,
0.71053457165757075059635209742, 2.40507548721078497229187371039, 4.14251011538571415330961171129, 5.36054392558397897088730336285, 5.85667906557422222491843185524, 6.90745429644619070007091050113, 7.44585344208448070796575038553, 8.098082563735665238727703414560, 9.586035055152074136869054940301, 10.49876496323365772648126235188