L(s) = 1 | + (−0.5 + 0.866i)2-s + 3·3-s + (0.500 + 0.866i)4-s + (1.5 + 2.59i)5-s + (−1.5 + 2.59i)6-s − 3·8-s + 6·9-s − 3·10-s − 3·11-s + (1.50 + 2.59i)12-s + (1 − 3.46i)13-s + (4.5 + 7.79i)15-s + (0.500 − 0.866i)16-s + (−1 − 1.73i)17-s + (−3 + 5.19i)18-s + 19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + 1.73·3-s + (0.250 + 0.433i)4-s + (0.670 + 1.16i)5-s + (−0.612 + 1.06i)6-s − 1.06·8-s + 2·9-s − 0.948·10-s − 0.904·11-s + (0.433 + 0.749i)12-s + (0.277 − 0.960i)13-s + (1.16 + 2.01i)15-s + (0.125 − 0.216i)16-s + (−0.242 − 0.420i)17-s + (−0.707 + 1.22i)18-s + 0.229·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.113 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.113 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.63638 + 1.83430i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.63638 + 1.83430i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-1 + 3.46i)T \) |
good | 2 | \( 1 + (0.5 - 0.866i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 - 3T + 3T^{2} \) |
| 5 | \( 1 + (-1.5 - 2.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 17 | \( 1 + (1 + 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - T + 19T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.5 + 6.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.5 + 2.59i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.5 + 6.06i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.5 - 2.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 13T + 61T^{2} \) |
| 67 | \( 1 + 3T + 67T^{2} \) |
| 71 | \( 1 + (6.5 - 11.2i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (6.5 - 11.2i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.5 - 2.59i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.5 - 4.33i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42149659983095379738553630387, −9.778685184786831876448337038634, −8.900877084746194396536859604799, −8.007832841253923214119331855791, −7.56306674795424406332456218611, −6.72426177460275896711449148052, −5.65715707973529754724028725698, −3.80813654828250170717958005537, −2.79304304217424092196289102658, −2.43417156954458916176106786594,
1.45000882721024066151316439259, 2.16984235531105985857885849370, 3.28411039031949028525051511701, 4.60003071303646567570301607707, 5.71406097845946011556786003564, 7.00336509204686665321898464106, 8.139316254233997057346155697860, 8.989526376112955629874363703719, 9.225572483665266828648821705129, 10.08993635598612210373246806177