L(s) = 1 | + (−0.5 + 0.866i)2-s + 3·3-s + (0.500 + 0.866i)4-s + (1.5 + 2.59i)5-s + (−1.5 + 2.59i)6-s − 3·8-s + 6·9-s − 3·10-s − 3·11-s + (1.50 + 2.59i)12-s + (1 − 3.46i)13-s + (4.5 + 7.79i)15-s + (0.500 − 0.866i)16-s + (−1 − 1.73i)17-s + (−3 + 5.19i)18-s + 19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + 1.73·3-s + (0.250 + 0.433i)4-s + (0.670 + 1.16i)5-s + (−0.612 + 1.06i)6-s − 1.06·8-s + 2·9-s − 0.948·10-s − 0.904·11-s + (0.433 + 0.749i)12-s + (0.277 − 0.960i)13-s + (1.16 + 2.01i)15-s + (0.125 − 0.216i)16-s + (−0.242 − 0.420i)17-s + (−0.707 + 1.22i)18-s + 0.229·19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.113−0.993i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.113−0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.113−0.993i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.113−0.993i)
|
Particular Values
L(1) |
≈ |
1.63638+1.83430i |
L(21) |
≈ |
1.63638+1.83430i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−1+3.46i)T |
good | 2 | 1+(0.5−0.866i)T+(−1−1.73i)T2 |
| 3 | 1−3T+3T2 |
| 5 | 1+(−1.5−2.59i)T+(−2.5+4.33i)T2 |
| 11 | 1+3T+11T2 |
| 17 | 1+(1+1.73i)T+(−8.5+14.7i)T2 |
| 19 | 1−T+19T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(3.5+6.06i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.5+2.59i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1−1.73i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−1.5−2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.5+6.06i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.5−0.866i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.5−2.59i)T+(−26.5−45.8i)T2 |
| 59 | 1+(2+3.46i)T+(−29.5+51.0i)T2 |
| 61 | 1−13T+61T2 |
| 67 | 1+3T+67T2 |
| 71 | 1+(6.5−11.2i)T+(−35.5−61.4i)T2 |
| 73 | 1+(6.5−11.2i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−1.5−2.59i)T+(−39.5+68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+(−3+5.19i)T+(−44.5−77.0i)T2 |
| 97 | 1+(2.5−4.33i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.42149659983095379738553630387, −9.778685184786831876448337038634, −8.900877084746194396536859604799, −8.007832841253923214119331855791, −7.56306674795424406332456218611, −6.72426177460275896711449148052, −5.65715707973529754724028725698, −3.80813654828250170717958005537, −2.79304304217424092196289102658, −2.43417156954458916176106786594,
1.45000882721024066151316439259, 2.16984235531105985857885849370, 3.28411039031949028525051511701, 4.60003071303646567570301607707, 5.71406097845946011556786003564, 7.00336509204686665321898464106, 8.139316254233997057346155697860, 8.989526376112955629874363703719, 9.225572483665266828648821705129, 10.08993635598612210373246806177