L(s) = 1 | + (−1.15 + 1.99i)2-s − 2.16·3-s + (−1.65 − 2.86i)4-s + (1.08 + 1.87i)5-s + (2.49 − 4.32i)6-s + 2.99·8-s + 1.69·9-s − 4.99·10-s + 4.90·11-s + (3.57 + 6.19i)12-s + (1.41 + 3.31i)13-s + (−2.34 − 4.06i)15-s + (−0.151 + 0.262i)16-s + (3.57 + 6.19i)17-s + (−1.95 + 3.38i)18-s − 2.16·19-s + ⋯ |
L(s) = 1 | + (−0.814 + 1.41i)2-s − 1.25·3-s + (−0.825 − 1.43i)4-s + (0.484 + 0.839i)5-s + (1.01 − 1.76i)6-s + 1.06·8-s + 0.565·9-s − 1.57·10-s + 1.47·11-s + (1.03 + 1.78i)12-s + (0.391 + 0.920i)13-s + (−0.606 − 1.05i)15-s + (−0.0378 + 0.0655i)16-s + (0.868 + 1.50i)17-s + (−0.460 + 0.797i)18-s − 0.497·19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.962+0.270i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.962+0.270i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.962+0.270i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.962+0.270i)
|
Particular Values
L(1) |
≈ |
0.0817953−0.594009i |
L(21) |
≈ |
0.0817953−0.594009i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−1.41−3.31i)T |
good | 2 | 1+(1.15−1.99i)T+(−1−1.73i)T2 |
| 3 | 1+2.16T+3T2 |
| 5 | 1+(−1.08−1.87i)T+(−2.5+4.33i)T2 |
| 11 | 1−4.90T+11T2 |
| 17 | 1+(−3.57−6.19i)T+(−8.5+14.7i)T2 |
| 19 | 1+2.16T+19T2 |
| 23 | 1+(−0.302+0.524i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.15−1.99i)T+(−14.5+25.1i)T2 |
| 31 | 1+(3.57−6.19i)T+(−15.5−26.8i)T2 |
| 37 | 1+(4.30−7.45i)T+(−18.5−32.0i)T2 |
| 41 | 1+(4.99+8.64i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−6.25+10.8i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.755+1.30i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.19−2.07i)T+(−26.5−45.8i)T2 |
| 59 | 1+(1.41+2.44i)T+(−29.5+51.0i)T2 |
| 61 | 1+4.33T+61T2 |
| 67 | 1−T+67T2 |
| 71 | 1+(2−3.46i)T+(−35.5−61.4i)T2 |
| 73 | 1+(2.16−3.75i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−3.30−5.72i)T+(−39.5+68.4i)T2 |
| 83 | 1+2.82T+83T2 |
| 89 | 1+(−3.25+5.63i)T+(−44.5−77.0i)T2 |
| 97 | 1+(6.83−11.8i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62038186654454957949196322665, −10.30890352033288525190082313754, −9.073285094618360481153253458874, −8.506471401017306110656349133921, −7.06767004553190363969496431811, −6.55923408345641586377799596268, −6.12028226255572705860102289384, −5.21617345683388593996720415946, −3.77814706079153294699345162486, −1.43321711011207616419629326184,
0.59491316310844949994328576582, 1.45489786088699784137537782638, 3.09727931737208258718285322023, 4.39952828842504443741813713425, 5.49249755285042169426601668523, 6.30057653774844438830171170188, 7.71423354379657254041901644199, 8.880872867274206210603272130993, 9.443137761428709148920442236705, 10.15157169401301630181984935412