L(s) = 1 | + (0.651 − 1.12i)2-s − 2.88·3-s + (0.151 + 0.262i)4-s + (1.44 + 2.49i)5-s + (−1.87 + 3.25i)6-s + 3·8-s + 5.30·9-s + 3.75·10-s − 5.90·11-s + (−0.436 − 0.755i)12-s + (−3.31 + 1.41i)13-s + (−4.15 − 7.19i)15-s + (1.65 − 2.86i)16-s + (−0.436 − 0.755i)17-s + (3.45 − 5.98i)18-s − 2.88·19-s + ⋯ |
L(s) = 1 | + (0.460 − 0.797i)2-s − 1.66·3-s + (0.0756 + 0.131i)4-s + (0.644 + 1.11i)5-s + (−0.766 + 1.32i)6-s + 1.06·8-s + 1.76·9-s + 1.18·10-s − 1.78·11-s + (−0.125 − 0.218i)12-s + (−0.920 + 0.391i)13-s + (−1.07 − 1.85i)15-s + (0.412 − 0.715i)16-s + (−0.105 − 0.183i)17-s + (0.814 − 1.41i)18-s − 0.661·19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.270−0.962i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.270−0.962i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.270−0.962i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.270−0.962i)
|
Particular Values
L(1) |
≈ |
0.401493+0.529721i |
L(21) |
≈ |
0.401493+0.529721i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(3.31−1.41i)T |
good | 2 | 1+(−0.651+1.12i)T+(−1−1.73i)T2 |
| 3 | 1+2.88T+3T2 |
| 5 | 1+(−1.44−2.49i)T+(−2.5+4.33i)T2 |
| 11 | 1+5.90T+11T2 |
| 17 | 1+(0.436+0.755i)T+(−8.5+14.7i)T2 |
| 19 | 1+2.88T+19T2 |
| 23 | 1+(3.30−5.72i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.651+1.12i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−0.436+0.755i)T+(−15.5−26.8i)T2 |
| 37 | 1+(0.697−1.20i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−3.75−6.50i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.75−4.77i)T+(−21.5−37.2i)T2 |
| 47 | 1+(6.19+10.7i)T+(−23.5+40.7i)T2 |
| 53 | 1+(4.80−8.31i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−3.31−5.74i)T+(−29.5+51.0i)T2 |
| 61 | 1+5.76T+61T2 |
| 67 | 1−T+67T2 |
| 71 | 1+(2−3.46i)T+(−35.5−61.4i)T2 |
| 73 | 1+(2.88−4.99i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.302+0.524i)T+(−39.5+68.4i)T2 |
| 83 | 1−6.63T+83T2 |
| 89 | 1+(−4.32+7.48i)T+(−44.5−77.0i)T2 |
| 97 | 1+(3.88−6.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98561458214860426518022685502, −10.24579739677536565264119769932, −9.912465429173331996474945934118, −7.82688317178886329083062210592, −7.11530423119909990739003302320, −6.19711589203445344710549032243, −5.29186700700751361976984848614, −4.48289715320759449117064495917, −2.96290337409701181636073737890, −2.00406772008254332923907426509,
0.35232875820824479073730201156, 2.02734045614282832183783224516, 4.65434739539467427610017102900, 4.99016298812799822771600940533, 5.68690271964038464712687686915, 6.34428015578737401457285997680, 7.39689825945529928656404350941, 8.309639699189783011609097856314, 9.794535540601185319282320462248, 10.46473694669118604717579500192