L(s) = 1 | + (0.651 − 1.12i)2-s − 2.88·3-s + (0.151 + 0.262i)4-s + (1.44 + 2.49i)5-s + (−1.87 + 3.25i)6-s + 3·8-s + 5.30·9-s + 3.75·10-s − 5.90·11-s + (−0.436 − 0.755i)12-s + (−3.31 + 1.41i)13-s + (−4.15 − 7.19i)15-s + (1.65 − 2.86i)16-s + (−0.436 − 0.755i)17-s + (3.45 − 5.98i)18-s − 2.88·19-s + ⋯ |
L(s) = 1 | + (0.460 − 0.797i)2-s − 1.66·3-s + (0.0756 + 0.131i)4-s + (0.644 + 1.11i)5-s + (−0.766 + 1.32i)6-s + 1.06·8-s + 1.76·9-s + 1.18·10-s − 1.78·11-s + (−0.125 − 0.218i)12-s + (−0.920 + 0.391i)13-s + (−1.07 − 1.85i)15-s + (0.412 − 0.715i)16-s + (−0.105 − 0.183i)17-s + (0.814 − 1.41i)18-s − 0.661·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.270 - 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.270 - 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.401493 + 0.529721i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.401493 + 0.529721i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (3.31 - 1.41i)T \) |
good | 2 | \( 1 + (-0.651 + 1.12i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + 2.88T + 3T^{2} \) |
| 5 | \( 1 + (-1.44 - 2.49i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 5.90T + 11T^{2} \) |
| 17 | \( 1 + (0.436 + 0.755i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + 2.88T + 19T^{2} \) |
| 23 | \( 1 + (3.30 - 5.72i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.651 + 1.12i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.436 + 0.755i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.697 - 1.20i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.75 - 6.50i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.75 - 4.77i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.19 + 10.7i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.80 - 8.31i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.31 - 5.74i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 5.76T + 61T^{2} \) |
| 67 | \( 1 - T + 67T^{2} \) |
| 71 | \( 1 + (2 - 3.46i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.88 - 4.99i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.302 + 0.524i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6.63T + 83T^{2} \) |
| 89 | \( 1 + (-4.32 + 7.48i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.88 - 6.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98561458214860426518022685502, −10.24579739677536565264119769932, −9.912465429173331996474945934118, −7.82688317178886329083062210592, −7.11530423119909990739003302320, −6.19711589203445344710549032243, −5.29186700700751361976984848614, −4.48289715320759449117064495917, −2.96290337409701181636073737890, −2.00406772008254332923907426509,
0.35232875820824479073730201156, 2.02734045614282832183783224516, 4.65434739539467427610017102900, 4.99016298812799822771600940533, 5.68690271964038464712687686915, 6.34428015578737401457285997680, 7.39689825945529928656404350941, 8.309639699189783011609097856314, 9.794535540601185319282320462248, 10.46473694669118604717579500192