L(s) = 1 | + (1.16 − 2.01i)2-s − 2.30·3-s + (−1.71 − 2.97i)4-s + (1.68 + 2.91i)5-s + (−2.69 + 4.66i)6-s − 3.34·8-s + 2.33·9-s + 7.85·10-s + 2.33·11-s + (3.96 + 6.87i)12-s + (−0.408 − 3.58i)13-s + (−3.89 − 6.74i)15-s + (−0.466 + 0.808i)16-s + (−2.72 − 4.72i)17-s + (2.71 − 4.70i)18-s + 7.16·19-s + ⋯ |
L(s) = 1 | + (0.824 − 1.42i)2-s − 1.33·3-s + (−0.858 − 1.48i)4-s + (0.753 + 1.30i)5-s + (−1.09 + 1.90i)6-s − 1.18·8-s + 0.777·9-s + 2.48·10-s + 0.702·11-s + (1.14 + 1.98i)12-s + (−0.113 − 0.993i)13-s + (−1.00 − 1.74i)15-s + (−0.116 + 0.202i)16-s + (−0.661 − 1.14i)17-s + (0.640 − 1.10i)18-s + 1.64·19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.334+0.942i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.334+0.942i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.334+0.942i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.334+0.942i)
|
Particular Values
L(1) |
≈ |
0.963578−1.36490i |
L(21) |
≈ |
0.963578−1.36490i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(0.408+3.58i)T |
good | 2 | 1+(−1.16+2.01i)T+(−1−1.73i)T2 |
| 3 | 1+2.30T+3T2 |
| 5 | 1+(−1.68−2.91i)T+(−2.5+4.33i)T2 |
| 11 | 1−2.33T+11T2 |
| 17 | 1+(2.72+4.72i)T+(−8.5+14.7i)T2 |
| 19 | 1−7.16T+19T2 |
| 23 | 1+(−3.22+5.58i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−4.22−7.31i)T+(−14.5+25.1i)T2 |
| 31 | 1+(1.52−2.64i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1.52−2.64i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.468+0.812i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.04+3.54i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.73+2.99i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.17+2.02i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−3.62−6.27i)T+(−29.5+51.0i)T2 |
| 61 | 1+6.39T+61T2 |
| 67 | 1−4.61T+67T2 |
| 71 | 1+(−3.79+6.57i)T+(−35.5−61.4i)T2 |
| 73 | 1+(1.03−1.79i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−3.79−6.57i)T+(−39.5+68.4i)T2 |
| 83 | 1−2.89T+83T2 |
| 89 | 1+(−6.57+11.3i)T+(−44.5−77.0i)T2 |
| 97 | 1+(1.77−3.08i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57751579351862003783821449188, −10.13952808625822453933590814536, −9.130999786823667295281224008166, −7.15276989680948597051378599076, −6.49798157271034221820574154835, −5.39889431925312597316156818598, −4.90903106048617149655649283161, −3.33483290317477363344109664211, −2.61810552408911526246420811017, −0.999022790644618120248558795987,
1.36717629302354125058642966541, 4.02264982061882533249235558985, 4.82333906129287647714677481585, 5.50702901944194747993822828636, 6.13343235579157349847329058936, 6.83588779536854595488423847752, 7.965003042393469732577689487609, 9.037865992694015132218765327021, 9.694373552114434014050155315833, 11.13981378135211865930967893106