L(s) = 1 | + (0.289 + 0.502i)2-s − 1.89·3-s + (0.831 − 1.44i)4-s + (−0.736 + 1.27i)5-s + (−0.548 − 0.950i)6-s + 2.12·8-s + 0.579·9-s − 0.854·10-s + 0.579·11-s + (−1.57 + 2.72i)12-s + (−0.128 − 3.60i)13-s + (1.39 − 2.41i)15-s + (−1.04 − 1.81i)16-s + (0.598 − 1.03i)17-s + (0.168 + 0.291i)18-s − 0.460·19-s + ⋯ |
L(s) = 1 | + (0.204 + 0.355i)2-s − 1.09·3-s + (0.415 − 0.720i)4-s + (−0.329 + 0.570i)5-s + (−0.223 − 0.387i)6-s + 0.751·8-s + 0.193·9-s − 0.270·10-s + 0.174·11-s + (−0.454 + 0.787i)12-s + (−0.0357 − 0.999i)13-s + (0.359 − 0.623i)15-s + (−0.261 − 0.453i)16-s + (0.145 − 0.251i)17-s + (0.0396 + 0.0686i)18-s − 0.105·19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.471+0.882i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.471+0.882i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.471+0.882i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.471+0.882i)
|
Particular Values
L(1) |
≈ |
0.861933−0.516829i |
L(21) |
≈ |
0.861933−0.516829i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(0.128+3.60i)T |
good | 2 | 1+(−0.289−0.502i)T+(−1+1.73i)T2 |
| 3 | 1+1.89T+3T2 |
| 5 | 1+(0.736−1.27i)T+(−2.5−4.33i)T2 |
| 11 | 1−0.579T+11T2 |
| 17 | 1+(−0.598+1.03i)T+(−8.5−14.7i)T2 |
| 19 | 1+0.460T+19T2 |
| 23 | 1+(1.18+2.05i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.44+5.96i)T+(−14.5−25.1i)T2 |
| 31 | 1+(2.22+3.84i)T+(−15.5+26.8i)T2 |
| 37 | 1+(4.58+7.93i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−2.00+3.47i)T+(−20.5−35.5i)T2 |
| 43 | 1+(4.02+6.97i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−5.75+9.97i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−4.69−8.13i)T+(−26.5+45.8i)T2 |
| 59 | 1+(0.120−0.208i)T+(−29.5−51.0i)T2 |
| 61 | 1−7.72T+61T2 |
| 67 | 1+1.44T+67T2 |
| 71 | 1+(−6.25−10.8i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−1.84−3.19i)T+(−36.5+63.2i)T2 |
| 79 | 1+(8.03−13.9i)T+(−39.5−68.4i)T2 |
| 83 | 1+15.4T+83T2 |
| 89 | 1+(1.24+2.15i)T+(−44.5+77.0i)T2 |
| 97 | 1+(7.82+13.5i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54087804395691024178131794045, −9.998229171609025365026002359339, −8.593327061210134546466172361920, −7.36615536854117370901645667668, −6.78864333083529584085502565648, −5.71893162263153022911162748028, −5.39063775777190702686948514594, −4.03582847618678352470385246225, −2.48272078879581929991038210113, −0.61498371685413355659004989304,
1.47003209809559148518823047527, 3.09820664560941021363336372774, 4.32324228638797322867602781170, 5.03485345398143778064823912804, 6.33010015300861960803316643531, 6.98246751193299329179854128527, 8.153358642086044038870938033041, 8.880668617204004762065250086422, 10.17147538091222620459639221431, 11.03984552273993751628501485457