L(s) = 1 | − 1.73·2-s + (0.366 + 0.633i)3-s + 0.999·4-s + (0.866 + 1.5i)5-s + (−0.633 − 1.09i)6-s + 1.73·8-s + (1.23 − 2.13i)9-s + (−1.49 − 2.59i)10-s + (−2.36 − 4.09i)11-s + (0.366 + 0.633i)12-s + (−1.59 − 3.23i)13-s + (−0.633 + 1.09i)15-s − 5·16-s − 4.26·17-s + (−2.13 + 3.69i)18-s + (−1 + 1.73i)19-s + ⋯ |
L(s) = 1 | − 1.22·2-s + (0.211 + 0.366i)3-s + 0.499·4-s + (0.387 + 0.670i)5-s + (−0.258 − 0.448i)6-s + 0.612·8-s + (0.410 − 0.711i)9-s + (−0.474 − 0.821i)10-s + (−0.713 − 1.23i)11-s + (0.105 + 0.183i)12-s + (−0.443 − 0.896i)13-s + (−0.163 + 0.283i)15-s − 1.25·16-s − 1.03·17-s + (−0.502 + 0.871i)18-s + (−0.229 + 0.397i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.312+0.949i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.312+0.949i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.312+0.949i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(165,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.312+0.949i)
|
Particular Values
L(1) |
≈ |
0.498628−0.360914i |
L(21) |
≈ |
0.498628−0.360914i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(1.59+3.23i)T |
good | 2 | 1+1.73T+2T2 |
| 3 | 1+(−0.366−0.633i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−0.866−1.5i)T+(−2.5+4.33i)T2 |
| 11 | 1+(2.36+4.09i)T+(−5.5+9.52i)T2 |
| 17 | 1+4.26T+17T2 |
| 19 | 1+(1−1.73i)T+(−9.5−16.4i)T2 |
| 23 | 1−1.26T+23T2 |
| 29 | 1+(−1.5+2.59i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−3.09+5.36i)T+(−15.5−26.8i)T2 |
| 37 | 1+7T+37T2 |
| 41 | 1+(2.59−4.5i)T+(−20.5−35.5i)T2 |
| 43 | 1+(5.09+8.83i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−0.464−0.803i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.96−3.40i)T+(−26.5−45.8i)T2 |
| 59 | 1−10.7T+59T2 |
| 61 | 1+(−7.59+13.1i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.09+3.63i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3+5.19i)T+(−35.5+61.4i)T2 |
| 73 | 1+(3.59−6.23i)T+(−36.5−63.2i)T2 |
| 79 | 1+(2.90+5.02i)T+(−39.5+68.4i)T2 |
| 83 | 1−8.19T+83T2 |
| 89 | 1+0.928T+89T2 |
| 97 | 1+(−7.19−12.4i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.33241210956498687273265791743, −9.626487628631171512667726836833, −8.658302454014191670095068495761, −8.120828848413968768641454745172, −7.01250330510461880530869810333, −6.16998439641410739154215555548, −4.86884107384667570159790280736, −3.51121697870780206351873417530, −2.34861426781548045296619249528, −0.49794417300932128086995355946,
1.52722091256529924963545745015, 2.31086174803166244226297971791, 4.58579823577039771669698339455, 4.98976548632169577198657356221, 6.97875970364840196587077416058, 7.17089685634967702469706586673, 8.452612441273263357510429085195, 8.856558367939913201908677850411, 9.868831522835656914984508154463, 10.34823426597866756210112819825