L(s) = 1 | + 2-s + (−0.707 − 1.22i)3-s − 4-s + (−2.04 − 3.54i)5-s + (−0.707 − 1.22i)6-s − 3·8-s + (0.500 − 0.866i)9-s + (−2.04 − 3.54i)10-s + (1.89 + 3.28i)11-s + (0.707 + 1.22i)12-s + (−0.634 + 3.54i)13-s + (−2.89 + 5.01i)15-s − 16-s − 1.26·17-s + (0.500 − 0.866i)18-s + (1.41 − 2.44i)19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.408 − 0.707i)3-s − 0.5·4-s + (−0.916 − 1.58i)5-s + (−0.288 − 0.499i)6-s − 1.06·8-s + (0.166 − 0.288i)9-s + (−0.647 − 1.12i)10-s + (0.572 + 0.991i)11-s + (0.204 + 0.353i)12-s + (−0.176 + 0.984i)13-s + (−0.748 + 1.29i)15-s − 0.250·16-s − 0.307·17-s + (0.117 − 0.204i)18-s + (0.324 − 0.561i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.799−0.600i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.799−0.600i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.799−0.600i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(165,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.799−0.600i)
|
Particular Values
L(1) |
≈ |
0.127386+0.381454i |
L(21) |
≈ |
0.127386+0.381454i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(0.634−3.54i)T |
good | 2 | 1−T+2T2 |
| 3 | 1+(0.707+1.22i)T+(−1.5+2.59i)T2 |
| 5 | 1+(2.04+3.54i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−1.89−3.28i)T+(−5.5+9.52i)T2 |
| 17 | 1+1.26T+17T2 |
| 19 | 1+(−1.41+2.44i)T+(−9.5−16.4i)T2 |
| 23 | 1+7.79T+23T2 |
| 29 | 1+(0.397−0.689i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−0.707+1.22i)T+(−15.5−26.8i)T2 |
| 37 | 1−2.79T+37T2 |
| 41 | 1+(1.48−2.57i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.89+6.75i)T+(−21.5+37.2i)T2 |
| 47 | 1+(1.41+2.44i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−6.29+10.9i)T+(−26.5−45.8i)T2 |
| 59 | 1+12.4T+59T2 |
| 61 | 1+(4.17−7.22i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.89−3.28i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3+5.19i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−6.29+10.8i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−1.10−1.90i)T+(−39.5+68.4i)T2 |
| 83 | 1+9.89T+83T2 |
| 89 | 1+14.9T+89T2 |
| 97 | 1+(−2.12−3.67i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.727996011780066538386788410682, −9.177594647178136452247083294109, −8.329712509896529966060692955423, −7.31806460269197796324218810692, −6.36158300534406703796087022537, −5.23057603277578183355679656986, −4.37222800816157669300173479210, −3.90354171036263999738015430229, −1.65642452258053526831642049145, −0.18803524849220343707046100301,
2.91023719803409712959394488642, 3.70944062101175525304037601134, 4.39011797812131996683950273538, 5.68200498818917686389429261663, 6.30984099576389531427242925532, 7.62287393438997108172910761964, 8.311582504875375206923165283830, 9.702433291958271798618058320643, 10.36898164826039010998662897138, 11.14395355723030652978511348550