L(s) = 1 | + 2-s + (−0.707 − 1.22i)3-s − 4-s + (−2.04 − 3.54i)5-s + (−0.707 − 1.22i)6-s − 3·8-s + (0.500 − 0.866i)9-s + (−2.04 − 3.54i)10-s + (1.89 + 3.28i)11-s + (0.707 + 1.22i)12-s + (−0.634 + 3.54i)13-s + (−2.89 + 5.01i)15-s − 16-s − 1.26·17-s + (0.500 − 0.866i)18-s + (1.41 − 2.44i)19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.408 − 0.707i)3-s − 0.5·4-s + (−0.916 − 1.58i)5-s + (−0.288 − 0.499i)6-s − 1.06·8-s + (0.166 − 0.288i)9-s + (−0.647 − 1.12i)10-s + (0.572 + 0.991i)11-s + (0.204 + 0.353i)12-s + (−0.176 + 0.984i)13-s + (−0.748 + 1.29i)15-s − 0.250·16-s − 0.307·17-s + (0.117 − 0.204i)18-s + (0.324 − 0.561i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.799 - 0.600i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.799 - 0.600i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.127386 + 0.381454i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.127386 + 0.381454i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (0.634 - 3.54i)T \) |
good | 2 | \( 1 - T + 2T^{2} \) |
| 3 | \( 1 + (0.707 + 1.22i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (2.04 + 3.54i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.89 - 3.28i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 1.26T + 17T^{2} \) |
| 19 | \( 1 + (-1.41 + 2.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 7.79T + 23T^{2} \) |
| 29 | \( 1 + (0.397 - 0.689i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.707 + 1.22i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2.79T + 37T^{2} \) |
| 41 | \( 1 + (1.48 - 2.57i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.89 + 6.75i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.41 + 2.44i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.29 + 10.9i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 12.4T + 59T^{2} \) |
| 61 | \( 1 + (4.17 - 7.22i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.89 - 3.28i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.29 + 10.8i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.10 - 1.90i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 9.89T + 83T^{2} \) |
| 89 | \( 1 + 14.9T + 89T^{2} \) |
| 97 | \( 1 + (-2.12 - 3.67i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.727996011780066538386788410682, −9.177594647178136452247083294109, −8.329712509896529966060692955423, −7.31806460269197796324218810692, −6.36158300534406703796087022537, −5.23057603277578183355679656986, −4.37222800816157669300173479210, −3.90354171036263999738015430229, −1.65642452258053526831642049145, −0.18803524849220343707046100301,
2.91023719803409712959394488642, 3.70944062101175525304037601134, 4.39011797812131996683950273538, 5.68200498818917686389429261663, 6.30984099576389531427242925532, 7.62287393438997108172910761964, 8.311582504875375206923165283830, 9.702433291958271798618058320643, 10.36898164826039010998662897138, 11.14395355723030652978511348550