L(s) = 1 | − 2.33·2-s + (1.15 + 1.99i)3-s + 3.43·4-s + (1.68 + 2.91i)5-s + (−2.69 − 4.66i)6-s − 3.34·8-s + (−1.16 + 2.01i)9-s + (−3.92 − 6.80i)10-s + (−1.16 − 2.01i)11-s + (3.96 + 6.87i)12-s + (−0.408 + 3.58i)13-s + (−3.89 + 6.74i)15-s + 0.933·16-s + 5.45·17-s + (2.71 − 4.70i)18-s + (−3.58 + 6.20i)19-s + ⋯ |
L(s) = 1 | − 1.64·2-s + (0.666 + 1.15i)3-s + 1.71·4-s + (0.753 + 1.30i)5-s + (−1.09 − 1.90i)6-s − 1.18·8-s + (−0.388 + 0.673i)9-s + (−1.24 − 2.15i)10-s + (−0.351 − 0.608i)11-s + (1.14 + 1.98i)12-s + (−0.113 + 0.993i)13-s + (−1.00 + 1.74i)15-s + 0.233·16-s + 1.32·17-s + (0.640 − 1.10i)18-s + (−0.822 + 1.42i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.835−0.548i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.835−0.548i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.835−0.548i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(165,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.835−0.548i)
|
Particular Values
L(1) |
≈ |
0.252451+0.844441i |
L(21) |
≈ |
0.252451+0.844441i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(0.408−3.58i)T |
good | 2 | 1+2.33T+2T2 |
| 3 | 1+(−1.15−1.99i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−1.68−2.91i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1.16+2.01i)T+(−5.5+9.52i)T2 |
| 17 | 1−5.45T+17T2 |
| 19 | 1+(3.58−6.20i)T+(−9.5−16.4i)T2 |
| 23 | 1+6.45T+23T2 |
| 29 | 1+(−4.22+7.31i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.52−2.64i)T+(−15.5−26.8i)T2 |
| 37 | 1−3.05T+37T2 |
| 41 | 1+(0.468−0.812i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.04−3.54i)T+(−21.5+37.2i)T2 |
| 47 | 1+(1.73+2.99i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.17+2.02i)T+(−26.5−45.8i)T2 |
| 59 | 1+7.24T+59T2 |
| 61 | 1+(−3.19+5.53i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.30+3.99i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−3.79−6.57i)T+(−35.5+61.4i)T2 |
| 73 | 1+(1.03−1.79i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−3.79−6.57i)T+(−39.5+68.4i)T2 |
| 83 | 1−2.89T+83T2 |
| 89 | 1+13.1T+89T2 |
| 97 | 1+(1.77+3.08i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40674757555282032997452833836, −9.903321990126708379427809311791, −9.588823870713672217835834768173, −8.397817216332858537120344564562, −7.88309219720193776464377792566, −6.64531929480115688973155720272, −5.89271212821711254313855585216, −4.07960432695075579383628748896, −2.96319370209523764930603837497, −1.93736358616088475201393040636,
0.76423655163299994550154811930, 1.72888373508026676429052858210, 2.65695754868378917317304619241, 4.86142367958467943862486740856, 6.04599615811058381188619099883, 7.18909228159948037538798500749, 7.85889507484750269714745716379, 8.481226904589051868692541887940, 9.141913273120150323645932037999, 9.959248288946991702269254996789