L(s) = 1 | − 0.579·2-s + (0.946 + 1.63i)3-s − 1.66·4-s + (−0.736 − 1.27i)5-s + (−0.548 − 0.950i)6-s + 2.12·8-s + (−0.289 + 0.502i)9-s + (0.427 + 0.739i)10-s + (−0.289 − 0.502i)11-s + (−1.57 − 2.72i)12-s + (−0.128 − 3.60i)13-s + (1.39 − 2.41i)15-s + 2.09·16-s − 1.19·17-s + (0.168 − 0.291i)18-s + (0.230 − 0.399i)19-s + ⋯ |
L(s) = 1 | − 0.409·2-s + (0.546 + 0.946i)3-s − 0.831·4-s + (−0.329 − 0.570i)5-s + (−0.223 − 0.387i)6-s + 0.751·8-s + (−0.0966 + 0.167i)9-s + (0.135 + 0.233i)10-s + (−0.0874 − 0.151i)11-s + (−0.454 − 0.787i)12-s + (−0.0357 − 0.999i)13-s + (0.359 − 0.623i)15-s + 0.523·16-s − 0.290·17-s + (0.0396 − 0.0686i)18-s + (0.0528 − 0.0915i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 + 0.418i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.908 + 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03007 - 0.225931i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03007 - 0.225931i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (0.128 + 3.60i)T \) |
good | 2 | \( 1 + 0.579T + 2T^{2} \) |
| 3 | \( 1 + (-0.946 - 1.63i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.736 + 1.27i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.289 + 0.502i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 1.19T + 17T^{2} \) |
| 19 | \( 1 + (-0.230 + 0.399i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 2.36T + 23T^{2} \) |
| 29 | \( 1 + (-3.44 + 5.96i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.22 - 3.84i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 9.16T + 37T^{2} \) |
| 41 | \( 1 + (-2.00 + 3.47i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.02 + 6.97i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.75 - 9.97i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.69 + 8.13i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 0.240T + 59T^{2} \) |
| 61 | \( 1 + (3.86 - 6.69i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.724 - 1.25i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.25 - 10.8i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.84 + 3.19i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (8.03 + 13.9i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 15.4T + 83T^{2} \) |
| 89 | \( 1 - 2.49T + 89T^{2} \) |
| 97 | \( 1 + (7.82 + 13.5i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18959329775372536320392787884, −9.654977590258728194680102112850, −8.676126221932964059805741573621, −8.409329335751048881566816964427, −7.30773792968958589999772821328, −5.73083036052229599421266503381, −4.68330006120752527351014588015, −4.09840852892491596434006468933, −2.93763734508302235611660294863, −0.74268881960285116168918604274,
1.32204334879384365880013536142, 2.67339105952063251936383461332, 3.99895295430819206552498111960, 5.03406990273487663456892356921, 6.54306378088053582098632234821, 7.29700966037458428552247362415, 7.977737751710605754359507400566, 8.843305502601304640024906774023, 9.542638295138275149120493460150, 10.60137771255938385272767012646