L(s) = 1 | − 0.579·2-s + (−0.946 + 1.63i)3-s − 1.66·4-s + (0.736 − 1.27i)5-s + (0.548 − 0.950i)6-s + 2.12·8-s + (−0.289 − 0.502i)9-s + (−0.427 + 0.739i)10-s + (−0.289 + 0.502i)11-s + (1.57 − 2.72i)12-s + (0.128 − 3.60i)13-s + (1.39 + 2.41i)15-s + 2.09·16-s + 1.19·17-s + (0.168 + 0.291i)18-s + (−0.230 − 0.399i)19-s + ⋯ |
L(s) = 1 | − 0.409·2-s + (−0.546 + 0.946i)3-s − 0.831·4-s + (0.329 − 0.570i)5-s + (0.223 − 0.387i)6-s + 0.751·8-s + (−0.0966 − 0.167i)9-s + (−0.135 + 0.233i)10-s + (−0.0874 + 0.151i)11-s + (0.454 − 0.787i)12-s + (0.0357 − 0.999i)13-s + (0.359 + 0.623i)15-s + 0.523·16-s + 0.290·17-s + (0.0396 + 0.0686i)18-s + (−0.0528 − 0.0915i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.355−0.934i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.355−0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.355−0.934i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(471,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.355−0.934i)
|
Particular Values
L(1) |
≈ |
0.673760+0.464427i |
L(21) |
≈ |
0.673760+0.464427i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−0.128+3.60i)T |
good | 2 | 1+0.579T+2T2 |
| 3 | 1+(0.946−1.63i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−0.736+1.27i)T+(−2.5−4.33i)T2 |
| 11 | 1+(0.289−0.502i)T+(−5.5−9.52i)T2 |
| 17 | 1−1.19T+17T2 |
| 19 | 1+(0.230+0.399i)T+(−9.5+16.4i)T2 |
| 23 | 1−2.36T+23T2 |
| 29 | 1+(−3.44−5.96i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−2.22−3.84i)T+(−15.5+26.8i)T2 |
| 37 | 1−9.16T+37T2 |
| 41 | 1+(2.00+3.47i)T+(−20.5+35.5i)T2 |
| 43 | 1+(4.02−6.97i)T+(−21.5−37.2i)T2 |
| 47 | 1+(5.75−9.97i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−4.69−8.13i)T+(−26.5+45.8i)T2 |
| 59 | 1+0.240T+59T2 |
| 61 | 1+(−3.86−6.69i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.724+1.25i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−6.25+10.8i)T+(−35.5−61.4i)T2 |
| 73 | 1+(1.84+3.19i)T+(−36.5+63.2i)T2 |
| 79 | 1+(8.03−13.9i)T+(−39.5−68.4i)T2 |
| 83 | 1−15.4T+83T2 |
| 89 | 1+2.49T+89T2 |
| 97 | 1+(−7.82+13.5i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.49550404578259339978565006478, −9.896128757694921097189792361247, −9.184507679584010355832707849004, −8.371983832712743482142336303237, −7.44530904655738560712282027159, −5.91076266754457141825335745633, −5.01187757739884982110026878344, −4.59843725726093570780371400235, −3.24683351912744735327667771579, −1.11492703540708945793058665478,
0.72273975159116333587483893882, 2.14701931989856412948559058917, 3.81681242304431167174811833702, 4.98287107339678412136637646125, 6.16782541660733044621504550857, 6.78770393394062905603242249766, 7.77347675637450382920699975295, 8.609825280858296438312486997968, 9.669204887449777328942757721623, 10.21486810813399703292187015339