L(s) = 1 | + 3·2-s + 3-s + 3·4-s + 3·6-s + 9-s − 9·11-s + 3·12-s − 14·13-s − 2·16-s + 6·17-s + 3·18-s + 9·19-s − 27·22-s − 6·23-s + 15·25-s − 42·26-s − 4·27-s + 9·29-s + 6·32-s − 9·33-s + 18·34-s + 3·36-s + 24·37-s + 27·38-s − 14·39-s − 18·41-s − 5·43-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 0.577·3-s + 3/2·4-s + 1.22·6-s + 1/3·9-s − 2.71·11-s + 0.866·12-s − 3.88·13-s − 1/2·16-s + 1.45·17-s + 0.707·18-s + 2.06·19-s − 5.75·22-s − 1.25·23-s + 3·25-s − 8.23·26-s − 0.769·27-s + 1.67·29-s + 1.06·32-s − 1.56·33-s + 3.08·34-s + 1/2·36-s + 3.94·37-s + 4.37·38-s − 2.24·39-s − 2.81·41-s − 0.762·43-s + ⋯ |
Λ(s)=(=((78⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((78⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
78⋅134
|
Sign: |
1
|
Analytic conductor: |
669.369 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 78⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.307219756 |
L(21) |
≈ |
6.307219756 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 7 | | 1 |
| 13 | C2 | (1+7T+pT2)2 |
good | 2 | C2×C22 | (1−T+pT2)2(1−T−T2−pT3+p2T4) |
| 3 | D4×C2 | 1−T+5T3−11T4+5pT5−p3T7+p4T8 |
| 5 | D4×C2 | 1−3pT2+101T4−3p3T6+p4T8 |
| 11 | D4×C2 | 1+9T+54T2+243T3+905T4+243pT5+54p2T6+9p3T7+p4T8 |
| 17 | C22 | (1−3T−8T2−3pT3+p2T4)2 |
| 19 | D4×C2 | 1−9T+56T2−261T3+993T4−261pT5+56p2T6−9p3T7+p4T8 |
| 23 | D4×C2 | 1+6T+2T2−72T3−201T4−72pT5+2p2T6+6p3T7+p4T8 |
| 29 | D4×C2 | 1−9T+8T2−135T3+2139T4−135pT5+8p2T6−9p3T7+p4T8 |
| 31 | C2 | (1−7T+pT2)2(1+7T+pT2)2 |
| 37 | C2 | (1−11T+pT2)2(1−T+pT2)2 |
| 41 | D4×C2 | 1+18T+210T2+1836T3+13151T4+1836pT5+210p2T6+18p3T7+p4T8 |
| 43 | D4×C2 | 1+5T−20T2−205T3−899T4−205pT5−20p2T6+5p3T7+p4T8 |
| 47 | D4×C2 | 1−78T2+4595T4−78p2T6+p4T8 |
| 53 | D4 | (1+6T+31T2+6pT3+p2T4)2 |
| 59 | D4×C2 | 1+6T+21T2+54T3−2692T4+54pT5+21p2T6+6p3T7+p4T8 |
| 61 | D4×C2 | 1+2T+70T2−376T3+391T4−376pT5+70p2T6+2p3T7+p4T8 |
| 67 | C2×C22 | (1−4T+pT2)2(1−4T−51T2−4pT3+p2T4) |
| 71 | D4×C2 | 1−6T+150T2−828T3+14855T4−828pT5+150p2T6−6p3T7+p4T8 |
| 73 | C22 | (1−134T2+p2T4)2 |
| 79 | C2 | (1+6T+pT2)4 |
| 83 | D4×C2 | 1−270T2+31667T4−270p2T6+p4T8 |
| 89 | D4×C2 | 1−33T+588T2−7425T3+75011T4−7425pT5+588p2T6−33p3T7+p4T8 |
| 97 | D4×C2 | 1−39T+812T2−11895T3+132795T4−11895pT5+812p2T6−39p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.74877425168365594260237677889, −7.34150167552812145586146284221, −7.28464483994551031939350551727, −6.98189212705122811679862003759, −6.58528229148462483192431559472, −6.27429343856061941558013860965, −6.16473037672556940125161873214, −5.72595265434186874292787510418, −5.47607828098225386784987627837, −5.24256810482218738934865840794, −4.96206817363485237646196803907, −4.82805757096900479260107752463, −4.74073964159259720591452148693, −4.64977096967864172658224527500, −4.56667528476319610584813868021, −3.74252111441710993804958462428, −3.48497073732612541650986951648, −3.29498762492748357425125107314, −2.84146579155933846267424105971, −2.77811873909924684767672166968, −2.72149990093153078315780972755, −2.21130596328021549322311126868, −1.92137794749078930091982327511, −0.946768860521896181542105793764, −0.55432840540967627536145525108,
0.55432840540967627536145525108, 0.946768860521896181542105793764, 1.92137794749078930091982327511, 2.21130596328021549322311126868, 2.72149990093153078315780972755, 2.77811873909924684767672166968, 2.84146579155933846267424105971, 3.29498762492748357425125107314, 3.48497073732612541650986951648, 3.74252111441710993804958462428, 4.56667528476319610584813868021, 4.64977096967864172658224527500, 4.74073964159259720591452148693, 4.82805757096900479260107752463, 4.96206817363485237646196803907, 5.24256810482218738934865840794, 5.47607828098225386784987627837, 5.72595265434186874292787510418, 6.16473037672556940125161873214, 6.27429343856061941558013860965, 6.58528229148462483192431559472, 6.98189212705122811679862003759, 7.28464483994551031939350551727, 7.34150167552812145586146284221, 7.74877425168365594260237677889