L(s) = 1 | + (−2.14 + 1.24i)2-s + (0.837 − 1.45i)3-s + (2.07 − 3.59i)4-s + (−0.584 + 0.337i)5-s + 4.15i·6-s + 5.35i·8-s + (0.0969 + 0.167i)9-s + (0.837 − 1.45i)10-s + (−3.88 − 2.24i)11-s + (−3.48 − 6.02i)12-s + (−3.28 − 1.48i)13-s + 1.13i·15-s + (−2.48 − 4.29i)16-s + (−1.64 + 2.84i)17-s + (−0.416 − 0.240i)18-s + (4.52 − 2.60i)19-s + ⋯ |
L(s) = 1 | + (−1.51 + 0.877i)2-s + (0.483 − 0.837i)3-s + (1.03 − 1.79i)4-s + (−0.261 + 0.150i)5-s + 1.69i·6-s + 1.89i·8-s + (0.0323 + 0.0559i)9-s + (0.264 − 0.458i)10-s + (−1.17 − 0.675i)11-s + (−1.00 − 1.74i)12-s + (−0.911 − 0.410i)13-s + 0.292i·15-s + (−0.620 − 1.07i)16-s + (−0.398 + 0.690i)17-s + (−0.0982 − 0.0567i)18-s + (1.03 − 0.598i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.932+0.361i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.932+0.361i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.932+0.361i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(116,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.932+0.361i)
|
Particular Values
L(1) |
≈ |
0.0156422−0.0835039i |
L(21) |
≈ |
0.0156422−0.0835039i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(3.28+1.48i)T |
good | 2 | 1+(2.14−1.24i)T+(1−1.73i)T2 |
| 3 | 1+(−0.837+1.45i)T+(−1.5−2.59i)T2 |
| 5 | 1+(0.584−0.337i)T+(2.5−4.33i)T2 |
| 11 | 1+(3.88+2.24i)T+(5.5+9.52i)T2 |
| 17 | 1+(1.64−2.84i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−4.52+2.60i)T+(9.5−16.4i)T2 |
| 23 | 1+(2.38+4.12i)T+(−11.5+19.9i)T2 |
| 29 | 1+9.31T+29T2 |
| 31 | 1+(−1.41−0.818i)T+(15.5+26.8i)T2 |
| 37 | 1+(1.25−0.721i)T+(18.5−32.0i)T2 |
| 41 | 1−7.92iT−41T2 |
| 43 | 1+4.61T+43T2 |
| 47 | 1+(6.81−3.93i)T+(23.5−40.7i)T2 |
| 53 | 1+(−1.57+2.73i)T+(−26.5−45.8i)T2 |
| 59 | 1+(2.20+1.27i)T+(29.5+51.0i)T2 |
| 61 | 1+(1.15+2.00i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6.36+3.67i)T+(33.5+58.0i)T2 |
| 71 | 1−7.75iT−71T2 |
| 73 | 1+(13.1+7.57i)T+(36.5+63.2i)T2 |
| 79 | 1+(7.33+12.6i)T+(−39.5+68.4i)T2 |
| 83 | 1−1.45iT−83T2 |
| 89 | 1+(−6.74+3.89i)T+(44.5−77.0i)T2 |
| 97 | 1−17.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01530260007297109347061750372, −9.076342074537408492344748712151, −8.124814170460279770365364209220, −7.74510607348593359507143155454, −7.12168422715009627849052811678, −6.09641517645581063622612280439, −5.05429722371347239303575781157, −2.95402480108783233746895225339, −1.72011818607322419245114619295, −0.06734020104326760646240778092,
1.94581157450727510236722975315, 3.00149781828412601366325325658, 4.07580028615551144219743497939, 5.28953630180208069241433476791, 7.22161761951695681406792931488, 7.67799504509975815709892071645, 8.674806868524324922915613490643, 9.560149101539265594750781248662, 9.853236174982899767436930821717, 10.55291221450846068872417332324