L(s) = 1 | + 803. i·3-s − 9.05e3i·5-s − 7.18e4·7-s − 4.69e5·9-s − 4.76e4i·11-s + 7.87e5i·13-s + 7.27e6·15-s − 5.65e6·17-s + 1.80e6i·19-s − 5.77e7i·21-s + 3.98e7·23-s − 3.30e7·25-s − 2.34e8i·27-s − 1.23e7i·29-s + 1.87e8·31-s + ⋯ |
L(s) = 1 | + 1.91i·3-s − 1.29i·5-s − 1.61·7-s − 2.64·9-s − 0.0892i·11-s + 0.588i·13-s + 2.47·15-s − 0.965·17-s + 0.167i·19-s − 3.08i·21-s + 1.29·23-s − 0.677·25-s − 3.14i·27-s − 0.112i·29-s + 1.17·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(\approx\) |
\(1.00650 + 0.132508i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00650 + 0.132508i\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 803. iT - 1.77e5T^{2} \) |
| 5 | \( 1 + 9.05e3iT - 4.88e7T^{2} \) |
| 7 | \( 1 + 7.18e4T + 1.97e9T^{2} \) |
| 11 | \( 1 + 4.76e4iT - 2.85e11T^{2} \) |
| 13 | \( 1 - 7.87e5iT - 1.79e12T^{2} \) |
| 17 | \( 1 + 5.65e6T + 3.42e13T^{2} \) |
| 19 | \( 1 - 1.80e6iT - 1.16e14T^{2} \) |
| 23 | \( 1 - 3.98e7T + 9.52e14T^{2} \) |
| 29 | \( 1 + 1.23e7iT - 1.22e16T^{2} \) |
| 31 | \( 1 - 1.87e8T + 2.54e16T^{2} \) |
| 37 | \( 1 - 1.60e8iT - 1.77e17T^{2} \) |
| 41 | \( 1 - 3.64e8T + 5.50e17T^{2} \) |
| 43 | \( 1 - 2.64e8iT - 9.29e17T^{2} \) |
| 47 | \( 1 - 4.74e8T + 2.47e18T^{2} \) |
| 53 | \( 1 + 1.34e9iT - 9.26e18T^{2} \) |
| 59 | \( 1 - 1.70e9iT - 3.01e19T^{2} \) |
| 61 | \( 1 + 4.97e9iT - 4.35e19T^{2} \) |
| 67 | \( 1 + 1.61e10iT - 1.22e20T^{2} \) |
| 71 | \( 1 - 1.83e10T + 2.31e20T^{2} \) |
| 73 | \( 1 + 3.02e10T + 3.13e20T^{2} \) |
| 79 | \( 1 + 3.11e10T + 7.47e20T^{2} \) |
| 83 | \( 1 - 4.96e10iT - 1.28e21T^{2} \) |
| 89 | \( 1 - 2.03e10T + 2.77e21T^{2} \) |
| 97 | \( 1 - 8.44e10T + 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.64809853989193112262844737435, −11.32569677369469339959388146647, −10.06757264930839402310674566836, −9.271062597882000785700859899874, −8.697011528064326129223997697617, −6.30923893493163276871245836204, −5.00290400652542698187310047072, −4.12960100819216882326543492363, −2.94653318299634403055247921668, −0.40903980408126673589052354103,
0.72482704355819193417892906294, 2.49486998110374112235047301904, 3.09951320969690271867446877210, 6.00211623397750546473005507545, 6.74948603927352357367817965157, 7.35068399375724244443594527371, 8.887605402756594419547466096854, 10.48311012554582457057585757095, 11.63269177113786776526325125361, 12.85749164719511640075769914740