L(s) = 1 | + 2·9-s − 12·17-s + 10·25-s − 12·41-s − 14·49-s + 4·73-s − 5·81-s + 36·89-s + 20·97-s + 36·113-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 2/3·9-s − 2.91·17-s + 2·25-s − 1.87·41-s − 2·49-s + 0.468·73-s − 5/9·81-s + 3.81·89-s + 2.03·97-s + 3.38·113-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=(4096s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(4096s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
4096
= 212
|
Sign: |
1
|
Analytic conductor: |
0.261164 |
Root analytic conductor: |
0.714872 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 4096, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7931241833 |
L(21) |
≈ |
0.7931241833 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
good | 3 | C22 | 1−2T2+p2T4 |
| 5 | C2 | (1−pT2)2 |
| 7 | C2 | (1+pT2)2 |
| 11 | C22 | 1+14T2+p2T4 |
| 13 | C2 | (1−pT2)2 |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C22 | 1−34T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−pT2)2 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1+14T2+p2T4 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−pT2)2 |
| 59 | C22 | 1−82T2+p2T4 |
| 61 | C2 | (1−pT2)2 |
| 67 | C22 | 1+62T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−2T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+158T2+p2T4 |
| 89 | C2 | (1−18T+pT2)2 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.24061031761495894594432737469, −14.77666960937088281402227755553, −14.11744779141590763691021382241, −13.40416631353195959623048426493, −13.01138251672671175392876917229, −12.71928374289623567725367707515, −11.74893177195257215025275776857, −11.32208652688223242730440004648, −10.65483692056500405743349122518, −10.26762558111546507012807907342, −9.334876857942576191292204419070, −8.852476829446497820961864119358, −8.351563371273259363456532004580, −7.34996069932697346126672149293, −6.66435165558541062030334206319, −6.37961207777060964519609837006, −4.85982387481815205334569253252, −4.66052578287437967441098070770, −3.40294200831321822698668003934, −2.08774265100019936984633203220,
2.08774265100019936984633203220, 3.40294200831321822698668003934, 4.66052578287437967441098070770, 4.85982387481815205334569253252, 6.37961207777060964519609837006, 6.66435165558541062030334206319, 7.34996069932697346126672149293, 8.351563371273259363456532004580, 8.852476829446497820961864119358, 9.334876857942576191292204419070, 10.26762558111546507012807907342, 10.65483692056500405743349122518, 11.32208652688223242730440004648, 11.74893177195257215025275776857, 12.71928374289623567725367707515, 13.01138251672671175392876917229, 13.40416631353195959623048426493, 14.11744779141590763691021382241, 14.77666960937088281402227755553, 15.24061031761495894594432737469