L(s) = 1 | + 2·9-s − 12·17-s + 10·25-s − 12·41-s − 14·49-s + 4·73-s − 5·81-s + 36·89-s + 20·97-s + 36·113-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 2/3·9-s − 2.91·17-s + 2·25-s − 1.87·41-s − 2·49-s + 0.468·73-s − 5/9·81-s + 3.81·89-s + 2.03·97-s + 3.38·113-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7931241833\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7931241833\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
good | 3 | $C_2^2$ | \( 1 - 2 T^{2} + p^{2} T^{4} \) |
| 5 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 11 | $C_2^2$ | \( 1 + 14 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 19 | $C_2^2$ | \( 1 - 34 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 + 14 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 59 | $C_2^2$ | \( 1 - 82 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 + 62 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 + 158 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - 18 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.24061031761495894594432737469, −14.77666960937088281402227755553, −14.11744779141590763691021382241, −13.40416631353195959623048426493, −13.01138251672671175392876917229, −12.71928374289623567725367707515, −11.74893177195257215025275776857, −11.32208652688223242730440004648, −10.65483692056500405743349122518, −10.26762558111546507012807907342, −9.334876857942576191292204419070, −8.852476829446497820961864119358, −8.351563371273259363456532004580, −7.34996069932697346126672149293, −6.66435165558541062030334206319, −6.37961207777060964519609837006, −4.85982387481815205334569253252, −4.66052578287437967441098070770, −3.40294200831321822698668003934, −2.08774265100019936984633203220,
2.08774265100019936984633203220, 3.40294200831321822698668003934, 4.66052578287437967441098070770, 4.85982387481815205334569253252, 6.37961207777060964519609837006, 6.66435165558541062030334206319, 7.34996069932697346126672149293, 8.351563371273259363456532004580, 8.852476829446497820961864119358, 9.334876857942576191292204419070, 10.26762558111546507012807907342, 10.65483692056500405743349122518, 11.32208652688223242730440004648, 11.74893177195257215025275776857, 12.71928374289623567725367707515, 13.01138251672671175392876917229, 13.40416631353195959623048426493, 14.11744779141590763691021382241, 14.77666960937088281402227755553, 15.24061031761495894594432737469