L(s) = 1 | + (−2 − 2i)3-s + (−2 − i)5-s + (−2 − 2i)7-s + 5i·9-s − 4·11-s + (3 − 3i)13-s + (2 + 6i)15-s + (−3 + 3i)17-s + 8i·21-s + (6 − 6i)23-s + (3 + 4i)25-s + (4 − 4i)27-s − 2·29-s + 4i·31-s + (8 + 8i)33-s + ⋯ |
L(s) = 1 | + (−1.15 − 1.15i)3-s + (−0.894 − 0.447i)5-s + (−0.755 − 0.755i)7-s + 1.66i·9-s − 1.20·11-s + (0.832 − 0.832i)13-s + (0.516 + 1.54i)15-s + (−0.727 + 0.727i)17-s + 1.74i·21-s + (1.25 − 1.25i)23-s + (0.600 + 0.800i)25-s + (0.769 − 0.769i)27-s − 0.371·29-s + 0.718i·31-s + (1.39 + 1.39i)33-s + ⋯ |
Λ(s)=(=(640s/2ΓC(s)L(s)(0.229−0.973i)Λ(2−s)
Λ(s)=(=(640s/2ΓC(s+1/2)L(s)(0.229−0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
640
= 27⋅5
|
Sign: |
0.229−0.973i
|
Analytic conductor: |
5.11042 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ640(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 640, ( :1/2), 0.229−0.973i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2+i)T |
good | 3 | 1+(2+2i)T+3iT2 |
| 7 | 1+(2+2i)T+7iT2 |
| 11 | 1+4T+11T2 |
| 13 | 1+(−3+3i)T−13iT2 |
| 17 | 1+(3−3i)T−17iT2 |
| 19 | 1−19T2 |
| 23 | 1+(−6+6i)T−23iT2 |
| 29 | 1+2T+29T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1+(−3−3i)T+37iT2 |
| 41 | 1+41T2 |
| 43 | 1+(−6−6i)T+43iT2 |
| 47 | 1+(6+6i)T+47iT2 |
| 53 | 1+(3−3i)T−53iT2 |
| 59 | 1−8iT−59T2 |
| 61 | 1+6iT−61T2 |
| 67 | 1+(6−6i)T−67iT2 |
| 71 | 1−12iT−71T2 |
| 73 | 1+(5+5i)T+73iT2 |
| 79 | 1+8T+79T2 |
| 83 | 1+(6+6i)T+83iT2 |
| 89 | 1−89T2 |
| 97 | 1+(−11+11i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37827154693147119374618047683, −8.716080269415606552805172520732, −7.932016416032224379560956265380, −7.13885330676611062736412675378, −6.40752833035295989276076819704, −5.43798738630811447986049713734, −4.40967537547889203218899388139, −3.01018158300185929880400611129, −1.07238195120230068737244481521, 0,
2.85613359519106576037039529113, 3.89381254674362611964359029669, 4.86805309074938886061555059625, 5.74338258133486128520737434358, 6.60871617935077736050584726147, 7.64604549490735914164621582145, 9.011162752102313393214350662114, 9.541604600396199050328214910754, 10.65404018383037689533675362148