L(s) = 1 | + (−2 − 2i)3-s + (−2 − i)5-s + (−2 − 2i)7-s + 5i·9-s − 4·11-s + (3 − 3i)13-s + (2 + 6i)15-s + (−3 + 3i)17-s + 8i·21-s + (6 − 6i)23-s + (3 + 4i)25-s + (4 − 4i)27-s − 2·29-s + 4i·31-s + (8 + 8i)33-s + ⋯ |
L(s) = 1 | + (−1.15 − 1.15i)3-s + (−0.894 − 0.447i)5-s + (−0.755 − 0.755i)7-s + 1.66i·9-s − 1.20·11-s + (0.832 − 0.832i)13-s + (0.516 + 1.54i)15-s + (−0.727 + 0.727i)17-s + 1.74i·21-s + (1.25 − 1.25i)23-s + (0.600 + 0.800i)25-s + (0.769 − 0.769i)27-s − 0.371·29-s + 0.718i·31-s + (1.39 + 1.39i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2 + i)T \) |
good | 3 | \( 1 + (2 + 2i)T + 3iT^{2} \) |
| 7 | \( 1 + (2 + 2i)T + 7iT^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 + (-3 + 3i)T - 13iT^{2} \) |
| 17 | \( 1 + (3 - 3i)T - 17iT^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-6 + 6i)T - 23iT^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 - 4iT - 31T^{2} \) |
| 37 | \( 1 + (-3 - 3i)T + 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (-6 - 6i)T + 43iT^{2} \) |
| 47 | \( 1 + (6 + 6i)T + 47iT^{2} \) |
| 53 | \( 1 + (3 - 3i)T - 53iT^{2} \) |
| 59 | \( 1 - 8iT - 59T^{2} \) |
| 61 | \( 1 + 6iT - 61T^{2} \) |
| 67 | \( 1 + (6 - 6i)T - 67iT^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 + (5 + 5i)T + 73iT^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 + (6 + 6i)T + 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (-11 + 11i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37827154693147119374618047683, −8.716080269415606552805172520732, −7.932016416032224379560956265380, −7.13885330676611062736412675378, −6.40752833035295989276076819704, −5.43798738630811447986049713734, −4.40967537547889203218899388139, −3.01018158300185929880400611129, −1.07238195120230068737244481521, 0,
2.85613359519106576037039529113, 3.89381254674362611964359029669, 4.86805309074938886061555059625, 5.74338258133486128520737434358, 6.60871617935077736050584726147, 7.64604549490735914164621582145, 9.011162752102313393214350662114, 9.541604600396199050328214910754, 10.65404018383037689533675362148