L(s) = 1 | + (0.734 + 0.734i)3-s + (1.17 − 1.90i)5-s − 1.71·7-s − 1.92i·9-s + (2.82 + 2.82i)11-s + (2.59 + 2.59i)13-s + (2.25 − 0.537i)15-s − 1.89i·17-s + (2.89 − 2.89i)19-s + (−1.25 − 1.25i)21-s − 2.00·23-s + (−2.25 − 4.46i)25-s + (3.61 − 3.61i)27-s + (6.72 − 6.72i)29-s + 7.11·31-s + ⋯ |
L(s) = 1 | + (0.423 + 0.423i)3-s + (0.524 − 0.851i)5-s − 0.648·7-s − 0.640i·9-s + (0.852 + 0.852i)11-s + (0.719 + 0.719i)13-s + (0.583 − 0.138i)15-s − 0.460i·17-s + (0.664 − 0.664i)19-s + (−0.274 − 0.274i)21-s − 0.418·23-s + (−0.450 − 0.892i)25-s + (0.695 − 0.695i)27-s + (1.24 − 1.24i)29-s + 1.27·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 + 0.269i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.962 + 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.86424 - 0.256276i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.86424 - 0.256276i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.17 + 1.90i)T \) |
good | 3 | \( 1 + (-0.734 - 0.734i)T + 3iT^{2} \) |
| 7 | \( 1 + 1.71T + 7T^{2} \) |
| 11 | \( 1 + (-2.82 - 2.82i)T + 11iT^{2} \) |
| 13 | \( 1 + (-2.59 - 2.59i)T + 13iT^{2} \) |
| 17 | \( 1 + 1.89iT - 17T^{2} \) |
| 19 | \( 1 + (-2.89 + 2.89i)T - 19iT^{2} \) |
| 23 | \( 1 + 2.00T + 23T^{2} \) |
| 29 | \( 1 + (-6.72 + 6.72i)T - 29iT^{2} \) |
| 31 | \( 1 - 7.11T + 31T^{2} \) |
| 37 | \( 1 + (2.25 - 2.25i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.59iT - 41T^{2} \) |
| 43 | \( 1 + (8.06 - 8.06i)T - 43iT^{2} \) |
| 47 | \( 1 - 4.43iT - 47T^{2} \) |
| 53 | \( 1 + (0.481 - 0.481i)T - 53iT^{2} \) |
| 59 | \( 1 + (-3.08 - 3.08i)T + 59iT^{2} \) |
| 61 | \( 1 + (3.46 - 3.46i)T - 61iT^{2} \) |
| 67 | \( 1 + (-1.80 - 1.80i)T + 67iT^{2} \) |
| 71 | \( 1 - 0.379iT - 71T^{2} \) |
| 73 | \( 1 - 8.37T + 73T^{2} \) |
| 79 | \( 1 + 11.2T + 79T^{2} \) |
| 83 | \( 1 + (8.24 + 8.24i)T + 83iT^{2} \) |
| 89 | \( 1 - 11.9iT - 89T^{2} \) |
| 97 | \( 1 + 6.50iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03840352500267674947322762472, −9.642406990301583284221286587166, −9.027699478993014764578491701123, −8.195497623215483950024078918414, −6.70628851974900006470182907542, −6.23333262452077610352988101229, −4.75996783757223605727182137978, −4.06763464440525479449552784847, −2.78925011207558333786063856349, −1.19527990505765903073388635666,
1.50272167740527704846676323283, 2.93946786300850675042583784199, 3.59889725486319411217060240965, 5.36084934990672785126573454213, 6.29447781012889912669341638745, 6.91128452867199976197045952403, 8.103816430685921229214635700366, 8.696857670881043836998366098918, 9.934619550379517745383522223133, 10.47323289022203372569769828884