L(s) = 1 | + (−6.39 − 6.39i)3-s + (3.53 − 3.53i)5-s + 30.7i·7-s + 54.7i·9-s + (−37.5 + 37.5i)11-s + (−22.1 − 22.1i)13-s − 45.2·15-s − 27.4·17-s + (46.7 + 46.7i)19-s + (196. − 196. i)21-s − 21.0i·23-s − 25.0i·25-s + (177. − 177. i)27-s + (−61.1 − 61.1i)29-s − 75.2·31-s + ⋯ |
L(s) = 1 | + (−1.23 − 1.23i)3-s + (0.316 − 0.316i)5-s + 1.66i·7-s + 2.02i·9-s + (−1.02 + 1.02i)11-s + (−0.472 − 0.472i)13-s − 0.778·15-s − 0.392·17-s + (0.564 + 0.564i)19-s + (2.04 − 2.04i)21-s − 0.190i·23-s − 0.200i·25-s + (1.26 − 1.26i)27-s + (−0.391 − 0.391i)29-s − 0.435·31-s + ⋯ |
Λ(s)=(=(640s/2ΓC(s)L(s)(−0.537+0.843i)Λ(4−s)
Λ(s)=(=(640s/2ΓC(s+3/2)L(s)(−0.537+0.843i)Λ(1−s)
Degree: |
2 |
Conductor: |
640
= 27⋅5
|
Sign: |
−0.537+0.843i
|
Analytic conductor: |
37.7612 |
Root analytic conductor: |
6.14501 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ640(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 640, ( :3/2), −0.537+0.843i)
|
Particular Values
L(2) |
≈ |
0.5403356437 |
L(21) |
≈ |
0.5403356437 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−3.53+3.53i)T |
good | 3 | 1+(6.39+6.39i)T+27iT2 |
| 7 | 1−30.7iT−343T2 |
| 11 | 1+(37.5−37.5i)T−1.33e3iT2 |
| 13 | 1+(22.1+22.1i)T+2.19e3iT2 |
| 17 | 1+27.4T+4.91e3T2 |
| 19 | 1+(−46.7−46.7i)T+6.85e3iT2 |
| 23 | 1+21.0iT−1.21e4T2 |
| 29 | 1+(61.1+61.1i)T+2.43e4iT2 |
| 31 | 1+75.2T+2.97e4T2 |
| 37 | 1+(−236.+236.i)T−5.06e4iT2 |
| 41 | 1+317.iT−6.89e4T2 |
| 43 | 1+(139.−139.i)T−7.95e4iT2 |
| 47 | 1−428.T+1.03e5T2 |
| 53 | 1+(−140.+140.i)T−1.48e5iT2 |
| 59 | 1+(136.−136.i)T−2.05e5iT2 |
| 61 | 1+(−65.1−65.1i)T+2.26e5iT2 |
| 67 | 1+(692.+692.i)T+3.00e5iT2 |
| 71 | 1+647.iT−3.57e5T2 |
| 73 | 1−502.iT−3.89e5T2 |
| 79 | 1+251.T+4.93e5T2 |
| 83 | 1+(482.+482.i)T+5.71e5iT2 |
| 89 | 1−887.iT−7.04e5T2 |
| 97 | 1−1.12e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.967201855770174834827822034015, −8.968200922210947537838052658994, −7.84720771939870630182749659107, −7.23747568999686996089357545545, −5.97276050248581711356503377171, −5.58811324173664456433287571898, −4.81278474469668392839652504164, −2.50637039341440762542845975464, −1.85918476455757368174766075221, −0.24119516374466615839385233326,
0.849954560365351226822390645723, 3.08173197322981514159991224824, 4.13951384996627054355001577606, 4.91275071014631909246455912555, 5.80480495711979929786592830006, 6.76621864220085584245219873196, 7.63928560688977448245906064639, 9.063252027576408905918774819350, 10.03409739433253924533094911645, 10.42542726800305209891130330859