L(s) = 1 | − 2-s + 1.41·3-s + 4-s − 1.41·5-s − 1.41·6-s + 7-s − 8-s + 1.00·9-s + 1.41·10-s + 1.41·12-s − 14-s − 2.00·15-s + 16-s + 1.41·17-s − 1.00·18-s − 1.41·20-s + 1.41·21-s + 23-s − 1.41·24-s + 1.00·25-s + 28-s + 2.00·30-s − 1.41·31-s − 32-s − 1.41·34-s − 1.41·35-s + 1.00·36-s + ⋯ |
L(s) = 1 | − 2-s + 1.41·3-s + 4-s − 1.41·5-s − 1.41·6-s + 7-s − 8-s + 1.00·9-s + 1.41·10-s + 1.41·12-s − 14-s − 2.00·15-s + 16-s + 1.41·17-s − 1.00·18-s − 1.41·20-s + 1.41·21-s + 23-s − 1.41·24-s + 1.00·25-s + 28-s + 2.00·30-s − 1.41·31-s − 32-s − 1.41·34-s − 1.41·35-s + 1.00·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8558405730\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8558405730\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 - 1.41T + T^{2} \) |
| 5 | \( 1 + 1.41T + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - 1.41T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.41T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + 2T + T^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 1.41T + T^{2} \) |
| 61 | \( 1 + 1.41T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 1.41T + T^{2} \) |
| 97 | \( 1 + 1.41T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71151265954247160824932584218, −9.659033938005076050156005878228, −8.786175260830488425875697771192, −8.121857943294006454824228319259, −7.73792359421508395715617726156, −6.98784542127546217791065901538, −5.22167820167357457854019983097, −3.76390930507839525578237207628, −3.03562512031864936252004995522, −1.58755983396228822870147661188,
1.58755983396228822870147661188, 3.03562512031864936252004995522, 3.76390930507839525578237207628, 5.22167820167357457854019983097, 6.98784542127546217791065901538, 7.73792359421508395715617726156, 8.121857943294006454824228319259, 8.786175260830488425875697771192, 9.659033938005076050156005878228, 10.71151265954247160824932584218