L(s) = 1 | − 2-s + 1.41·3-s + 4-s − 1.41·5-s − 1.41·6-s + 7-s − 8-s + 1.00·9-s + 1.41·10-s + 1.41·12-s − 14-s − 2.00·15-s + 16-s + 1.41·17-s − 1.00·18-s − 1.41·20-s + 1.41·21-s + 23-s − 1.41·24-s + 1.00·25-s + 28-s + 2.00·30-s − 1.41·31-s − 32-s − 1.41·34-s − 1.41·35-s + 1.00·36-s + ⋯ |
L(s) = 1 | − 2-s + 1.41·3-s + 4-s − 1.41·5-s − 1.41·6-s + 7-s − 8-s + 1.00·9-s + 1.41·10-s + 1.41·12-s − 14-s − 2.00·15-s + 16-s + 1.41·17-s − 1.00·18-s − 1.41·20-s + 1.41·21-s + 23-s − 1.41·24-s + 1.00·25-s + 28-s + 2.00·30-s − 1.41·31-s − 32-s − 1.41·34-s − 1.41·35-s + 1.00·36-s + ⋯ |
Λ(s)=(=(644s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(644s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
644
= 22⋅7⋅23
|
Sign: |
1
|
Analytic conductor: |
0.321397 |
Root analytic conductor: |
0.566919 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ644(643,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 644, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.8558405730 |
L(21) |
≈ |
0.8558405730 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 7 | 1−T |
| 23 | 1−T |
good | 3 | 1−1.41T+T2 |
| 5 | 1+1.41T+T2 |
| 11 | 1+T2 |
| 13 | 1−T2 |
| 17 | 1−1.41T+T2 |
| 19 | 1−T2 |
| 29 | 1+T2 |
| 31 | 1+1.41T+T2 |
| 37 | 1−T2 |
| 41 | 1−T2 |
| 43 | 1+2T+T2 |
| 47 | 1+1.41T+T2 |
| 53 | 1−T2 |
| 59 | 1−1.41T+T2 |
| 61 | 1+1.41T+T2 |
| 67 | 1+T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+T2 |
| 83 | 1−T2 |
| 89 | 1−1.41T+T2 |
| 97 | 1+1.41T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71151265954247160824932584218, −9.659033938005076050156005878228, −8.786175260830488425875697771192, −8.121857943294006454824228319259, −7.73792359421508395715617726156, −6.98784542127546217791065901538, −5.22167820167357457854019983097, −3.76390930507839525578237207628, −3.03562512031864936252004995522, −1.58755983396228822870147661188,
1.58755983396228822870147661188, 3.03562512031864936252004995522, 3.76390930507839525578237207628, 5.22167820167357457854019983097, 6.98784542127546217791065901538, 7.73792359421508395715617726156, 8.121857943294006454824228319259, 8.786175260830488425875697771192, 9.659033938005076050156005878228, 10.71151265954247160824932584218