L(s) = 1 | + (−0.5 + 0.866i)5-s + (−2 − 3.46i)11-s + (2.5 − 4.33i)13-s + 5·17-s + 8·19-s + (−2 + 3.46i)23-s + (2 + 3.46i)25-s + (1.5 + 2.59i)29-s + (2 − 3.46i)31-s + 3·37-s + (−3 + 5.19i)41-s + (−2 − 3.46i)43-s + (−6 − 10.3i)47-s + (3.5 − 6.06i)49-s + 10·53-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (−0.603 − 1.04i)11-s + (0.693 − 1.20i)13-s + 1.21·17-s + 1.83·19-s + (−0.417 + 0.722i)23-s + (0.400 + 0.692i)25-s + (0.278 + 0.482i)29-s + (0.359 − 0.622i)31-s + 0.493·37-s + (−0.468 + 0.811i)41-s + (−0.304 − 0.528i)43-s + (−0.875 − 1.51i)47-s + (0.5 − 0.866i)49-s + 1.37·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46089 - 0.257595i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46089 - 0.257595i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (0.5 - 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2 + 3.46i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.5 + 4.33i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5T + 17T^{2} \) |
| 19 | \( 1 - 8T + 19T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 - 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3T + 37T^{2} \) |
| 41 | \( 1 + (3 - 5.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2 + 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6 + 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 10T + 53T^{2} \) |
| 59 | \( 1 + (-4 + 6.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.5 - 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 16T + 71T^{2} \) |
| 73 | \( 1 + 5T + 73T^{2} \) |
| 79 | \( 1 + (2 + 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2 - 3.46i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40669483059949278833418022701, −9.879597909853462448629663165980, −8.596916079704621307791166633108, −7.894018470313576269423089995058, −7.13372946002880008863686182679, −5.70045620935597034959393437541, −5.37295755941187757784743937648, −3.50975622336588429877136245341, −3.06609804457042375395309974160, −1.00238609440448937145581082726,
1.30779297828782502194162460003, 2.83860846897657684436331409330, 4.17236036404640762973616066106, 4.99882751558832397554317332751, 6.09586392461474002859707144693, 7.19773138232367590673549994069, 7.925724044080088551348835780880, 8.901119031133583659195871907494, 9.788968120591627280959432918501, 10.43719294184156948724130510520