L(s) = 1 | + (1 + 1.73i)5-s + (−2 + 3.46i)11-s + (1 + 1.73i)13-s + 2·17-s − 4·19-s + (4 + 6.92i)23-s + (0.500 − 0.866i)25-s + (−3 + 5.19i)29-s + (−4 − 6.92i)31-s + 6·37-s + (3 + 5.19i)41-s + (−2 + 3.46i)43-s + (3.5 + 6.06i)49-s − 2·53-s − 7.99·55-s + ⋯ |
L(s) = 1 | + (0.447 + 0.774i)5-s + (−0.603 + 1.04i)11-s + (0.277 + 0.480i)13-s + 0.485·17-s − 0.917·19-s + (0.834 + 1.44i)23-s + (0.100 − 0.173i)25-s + (−0.557 + 0.964i)29-s + (−0.718 − 1.24i)31-s + 0.986·37-s + (0.468 + 0.811i)41-s + (−0.304 + 0.528i)43-s + (0.5 + 0.866i)49-s − 0.274·53-s − 1.07·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.10132 + 0.924121i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.10132 + 0.924121i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1 - 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2 - 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1 - 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + (-4 - 6.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3 - 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4 + 6.92i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 + (-3 - 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2 - 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 + (2 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 + 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2 + 3.46i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82910976815498650411108649147, −9.800694521284593924296395428975, −9.296350878961516544050763838765, −7.959977925105450543168745352543, −7.20850623489491585416891420720, −6.34008160466344299310352664117, −5.35184931790300732064915431403, −4.21186959740816363360918420146, −2.93723664021228436927822728302, −1.81482394597607346601195346320,
0.795445496484644195298392014606, 2.43903165434531482004299607705, 3.71741783398813422121774248189, 5.02244930777681257047983776151, 5.69395885640079870006386771579, 6.69299185586611711619627501552, 7.980359729402398523721405884329, 8.624007881627953683019060061162, 9.360380108516642797883713940191, 10.55148577808006058343086342745