L(s) = 1 | + (7 − 12.1i)5-s + (12 + 20.7i)7-s + (−14 − 24.2i)11-s + (37 − 64.0i)13-s − 82·17-s + 92·19-s + (4 − 6.92i)23-s + (−35.5 − 61.4i)25-s + (−69 − 119. i)29-s + (−40 + 69.2i)31-s + 336·35-s + 30·37-s + (141 − 244. i)41-s + (−2 − 3.46i)43-s + (120 + 207. i)47-s + ⋯ |
L(s) = 1 | + (0.626 − 1.08i)5-s + (0.647 + 1.12i)7-s + (−0.383 − 0.664i)11-s + (0.789 − 1.36i)13-s − 1.16·17-s + 1.11·19-s + (0.0362 − 0.0628i)23-s + (−0.284 − 0.491i)25-s + (−0.441 − 0.765i)29-s + (−0.231 + 0.401i)31-s + 1.62·35-s + 0.133·37-s + (0.537 − 0.930i)41-s + (−0.00709 − 0.0122i)43-s + (0.372 + 0.645i)47-s + ⋯ |
Λ(s)=(=(648s/2ΓC(s)L(s)(0.173+0.984i)Λ(4−s)
Λ(s)=(=(648s/2ΓC(s+3/2)L(s)(0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
648
= 23⋅34
|
Sign: |
0.173+0.984i
|
Analytic conductor: |
38.2332 |
Root analytic conductor: |
6.18330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ648(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 648, ( :3/2), 0.173+0.984i)
|
Particular Values
L(2) |
≈ |
2.242390169 |
L(21) |
≈ |
2.242390169 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(−7+12.1i)T+(−62.5−108.i)T2 |
| 7 | 1+(−12−20.7i)T+(−171.5+297.i)T2 |
| 11 | 1+(14+24.2i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+(−37+64.0i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1+82T+4.91e3T2 |
| 19 | 1−92T+6.85e3T2 |
| 23 | 1+(−4+6.92i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(69+119.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+(40−69.2i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1−30T+5.06e4T2 |
| 41 | 1+(−141+244.i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(2+3.46i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−120−207.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1−130T+1.48e5T2 |
| 59 | 1+(−298+516.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−109−188.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−218+377.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+856T+3.57e5T2 |
| 73 | 1+998T+3.89e5T2 |
| 79 | 1+(−16−27.7i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+(754+1.30e3i)T+(−2.85e5+4.95e5i)T2 |
| 89 | 1−246T+7.04e5T2 |
| 97 | 1+(433+749.i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.844233880186278535647137565263, −8.755379672257053794771258607995, −8.621405379032568533200192710895, −7.52328164065774003601834915746, −5.81504936933466900162022931619, −5.63568407027808041708922415239, −4.63184982051734542147706694343, −3.09802766053267128982406152202, −1.90189234642562492371828503222, −0.66289578997071255824265973458,
1.37942192977206193334380248314, 2.44480035873132897334945559695, 3.83017465570859733431992307674, 4.69510224292460900333135538593, 6.00217826924416378270353643239, 7.02401065066841290790610169606, 7.32910167601967850554579087301, 8.680146680326473530812861359555, 9.640955368111765398935526997859, 10.42673956495899270700617516249