L(s) = 1 | + (7 − 12.1i)5-s + (12 + 20.7i)7-s + (−14 − 24.2i)11-s + (37 − 64.0i)13-s − 82·17-s + 92·19-s + (4 − 6.92i)23-s + (−35.5 − 61.4i)25-s + (−69 − 119. i)29-s + (−40 + 69.2i)31-s + 336·35-s + 30·37-s + (141 − 244. i)41-s + (−2 − 3.46i)43-s + (120 + 207. i)47-s + ⋯ |
L(s) = 1 | + (0.626 − 1.08i)5-s + (0.647 + 1.12i)7-s + (−0.383 − 0.664i)11-s + (0.789 − 1.36i)13-s − 1.16·17-s + 1.11·19-s + (0.0362 − 0.0628i)23-s + (−0.284 − 0.491i)25-s + (−0.441 − 0.765i)29-s + (−0.231 + 0.401i)31-s + 1.62·35-s + 0.133·37-s + (0.537 − 0.930i)41-s + (−0.00709 − 0.0122i)43-s + (0.372 + 0.645i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.242390169\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.242390169\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-7 + 12.1i)T + (-62.5 - 108. i)T^{2} \) |
| 7 | \( 1 + (-12 - 20.7i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (14 + 24.2i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-37 + 64.0i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 82T + 4.91e3T^{2} \) |
| 19 | \( 1 - 92T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-4 + 6.92i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (69 + 119. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (40 - 69.2i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 - 30T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-141 + 244. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (2 + 3.46i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-120 - 207. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 - 130T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-298 + 516. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-109 - 188. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-218 + 377. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 856T + 3.57e5T^{2} \) |
| 73 | \( 1 + 998T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-16 - 27.7i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (754 + 1.30e3i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 246T + 7.04e5T^{2} \) |
| 97 | \( 1 + (433 + 749. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.844233880186278535647137565263, −8.755379672257053794771258607995, −8.621405379032568533200192710895, −7.52328164065774003601834915746, −5.81504936933466900162022931619, −5.63568407027808041708922415239, −4.63184982051734542147706694343, −3.09802766053267128982406152202, −1.90189234642562492371828503222, −0.66289578997071255824265973458,
1.37942192977206193334380248314, 2.44480035873132897334945559695, 3.83017465570859733431992307674, 4.69510224292460900333135538593, 6.00217826924416378270353643239, 7.02401065066841290790610169606, 7.32910167601967850554579087301, 8.680146680326473530812861359555, 9.640955368111765398935526997859, 10.42673956495899270700617516249