Properties

Label 2-6480-1.1-c1-0-68
Degree $2$
Conductor $6480$
Sign $-1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3.44·7-s + 2·17-s + 6.89·19-s − 7.44·23-s + 25-s + 1.89·29-s − 1.10·31-s − 3.44·35-s − 6·37-s + 9.89·41-s − 11.7·43-s − 9.44·47-s + 4.89·49-s − 7.79·53-s − 1.10·59-s − 3·61-s + 13.2·67-s + 9.79·71-s + 13.7·73-s + 6.89·79-s − 5.44·83-s + 2·85-s − 2.79·89-s + 6.89·95-s + 2·97-s + 2·101-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.30·7-s + 0.485·17-s + 1.58·19-s − 1.55·23-s + 0.200·25-s + 0.352·29-s − 0.197·31-s − 0.583·35-s − 0.986·37-s + 1.54·41-s − 1.79·43-s − 1.37·47-s + 0.699·49-s − 1.07·53-s − 0.143·59-s − 0.384·61-s + 1.61·67-s + 1.16·71-s + 1.61·73-s + 0.776·79-s − 0.598·83-s + 0.216·85-s − 0.296·89-s + 0.707·95-s + 0.203·97-s + 0.199·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 3.44T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 6.89T + 19T^{2} \)
23 \( 1 + 7.44T + 23T^{2} \)
29 \( 1 - 1.89T + 29T^{2} \)
31 \( 1 + 1.10T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 - 9.89T + 41T^{2} \)
43 \( 1 + 11.7T + 43T^{2} \)
47 \( 1 + 9.44T + 47T^{2} \)
53 \( 1 + 7.79T + 53T^{2} \)
59 \( 1 + 1.10T + 59T^{2} \)
61 \( 1 + 3T + 61T^{2} \)
67 \( 1 - 13.2T + 67T^{2} \)
71 \( 1 - 9.79T + 71T^{2} \)
73 \( 1 - 13.7T + 73T^{2} \)
79 \( 1 - 6.89T + 79T^{2} \)
83 \( 1 + 5.44T + 83T^{2} \)
89 \( 1 + 2.79T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72625311564088074510738200508, −6.74323440673612004599100064453, −6.37927948760041414273827091542, −5.55024863937292157792583271726, −4.97050102712626707296941390519, −3.72832506110831643065938591819, −3.30580632779638021857339992849, −2.37826302435680562046843035071, −1.29002650284380719422843990297, 0, 1.29002650284380719422843990297, 2.37826302435680562046843035071, 3.30580632779638021857339992849, 3.72832506110831643065938591819, 4.97050102712626707296941390519, 5.55024863937292157792583271726, 6.37927948760041414273827091542, 6.74323440673612004599100064453, 7.72625311564088074510738200508

Graph of the $Z$-function along the critical line