Properties

Label 2-6480-1.1-c1-0-23
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 1.43·7-s + 1.35·11-s − 5.52·13-s + 4.82·17-s + 0.648·19-s + 8.90·23-s + 25-s − 7.17·29-s + 4.64·31-s − 1.43·35-s + 1.35·37-s + 0.351·41-s − 4.82·43-s + 9.49·47-s − 4.93·49-s − 8.17·53-s + 1.35·55-s − 1.46·59-s + 6.69·61-s − 5.52·65-s − 12.4·67-s − 2.22·71-s − 4.34·73-s − 1.94·77-s + 13.0·79-s + 5.26·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.543·7-s + 0.407·11-s − 1.53·13-s + 1.16·17-s + 0.148·19-s + 1.85·23-s + 0.200·25-s − 1.33·29-s + 0.834·31-s − 0.243·35-s + 0.222·37-s + 0.0549·41-s − 0.735·43-s + 1.38·47-s − 0.704·49-s − 1.12·53-s + 0.182·55-s − 0.191·59-s + 0.857·61-s − 0.685·65-s − 1.51·67-s − 0.264·71-s − 0.508·73-s − 0.221·77-s + 1.46·79-s + 0.577·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.952064831\)
\(L(\frac12)\) \(\approx\) \(1.952064831\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 1.43T + 7T^{2} \)
11 \( 1 - 1.35T + 11T^{2} \)
13 \( 1 + 5.52T + 13T^{2} \)
17 \( 1 - 4.82T + 17T^{2} \)
19 \( 1 - 0.648T + 19T^{2} \)
23 \( 1 - 8.90T + 23T^{2} \)
29 \( 1 + 7.17T + 29T^{2} \)
31 \( 1 - 4.64T + 31T^{2} \)
37 \( 1 - 1.35T + 37T^{2} \)
41 \( 1 - 0.351T + 41T^{2} \)
43 \( 1 + 4.82T + 43T^{2} \)
47 \( 1 - 9.49T + 47T^{2} \)
53 \( 1 + 8.17T + 53T^{2} \)
59 \( 1 + 1.46T + 59T^{2} \)
61 \( 1 - 6.69T + 61T^{2} \)
67 \( 1 + 12.4T + 67T^{2} \)
71 \( 1 + 2.22T + 71T^{2} \)
73 \( 1 + 4.34T + 73T^{2} \)
79 \( 1 - 13.0T + 79T^{2} \)
83 \( 1 - 5.26T + 83T^{2} \)
89 \( 1 + 11T + 89T^{2} \)
97 \( 1 - 17.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81014238881392944216608366839, −7.32417782246611439186240385764, −6.66304164824867870511030635526, −5.87153827298815125076737466634, −5.16355035873671785504375497858, −4.55974308653066974228749603232, −3.38913500103024881152654747512, −2.87252023059663371208334437680, −1.84573268714590542162019713095, −0.72408876703583060903983536965, 0.72408876703583060903983536965, 1.84573268714590542162019713095, 2.87252023059663371208334437680, 3.38913500103024881152654747512, 4.55974308653066974228749603232, 5.16355035873671785504375497858, 5.87153827298815125076737466634, 6.66304164824867870511030635526, 7.32417782246611439186240385764, 7.81014238881392944216608366839

Graph of the $Z$-function along the critical line