L(s) = 1 | + 5-s − 1.43·7-s + 1.35·11-s − 5.52·13-s + 4.82·17-s + 0.648·19-s + 8.90·23-s + 25-s − 7.17·29-s + 4.64·31-s − 1.43·35-s + 1.35·37-s + 0.351·41-s − 4.82·43-s + 9.49·47-s − 4.93·49-s − 8.17·53-s + 1.35·55-s − 1.46·59-s + 6.69·61-s − 5.52·65-s − 12.4·67-s − 2.22·71-s − 4.34·73-s − 1.94·77-s + 13.0·79-s + 5.26·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.543·7-s + 0.407·11-s − 1.53·13-s + 1.16·17-s + 0.148·19-s + 1.85·23-s + 0.200·25-s − 1.33·29-s + 0.834·31-s − 0.243·35-s + 0.222·37-s + 0.0549·41-s − 0.735·43-s + 1.38·47-s − 0.704·49-s − 1.12·53-s + 0.182·55-s − 0.191·59-s + 0.857·61-s − 0.685·65-s − 1.51·67-s − 0.264·71-s − 0.508·73-s − 0.221·77-s + 1.46·79-s + 0.577·83-s + ⋯ |
Λ(s)=(=(6480s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6480s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.952064831 |
L(21) |
≈ |
1.952064831 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
good | 7 | 1+1.43T+7T2 |
| 11 | 1−1.35T+11T2 |
| 13 | 1+5.52T+13T2 |
| 17 | 1−4.82T+17T2 |
| 19 | 1−0.648T+19T2 |
| 23 | 1−8.90T+23T2 |
| 29 | 1+7.17T+29T2 |
| 31 | 1−4.64T+31T2 |
| 37 | 1−1.35T+37T2 |
| 41 | 1−0.351T+41T2 |
| 43 | 1+4.82T+43T2 |
| 47 | 1−9.49T+47T2 |
| 53 | 1+8.17T+53T2 |
| 59 | 1+1.46T+59T2 |
| 61 | 1−6.69T+61T2 |
| 67 | 1+12.4T+67T2 |
| 71 | 1+2.22T+71T2 |
| 73 | 1+4.34T+73T2 |
| 79 | 1−13.0T+79T2 |
| 83 | 1−5.26T+83T2 |
| 89 | 1+11T+89T2 |
| 97 | 1−17.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.81014238881392944216608366839, −7.32417782246611439186240385764, −6.66304164824867870511030635526, −5.87153827298815125076737466634, −5.16355035873671785504375497858, −4.55974308653066974228749603232, −3.38913500103024881152654747512, −2.87252023059663371208334437680, −1.84573268714590542162019713095, −0.72408876703583060903983536965,
0.72408876703583060903983536965, 1.84573268714590542162019713095, 2.87252023059663371208334437680, 3.38913500103024881152654747512, 4.55974308653066974228749603232, 5.16355035873671785504375497858, 5.87153827298815125076737466634, 6.66304164824867870511030635526, 7.32417782246611439186240385764, 7.81014238881392944216608366839