Properties

Label 2-6480-1.1-c1-0-38
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4.34·7-s + 2.70·11-s − 6.26·13-s + 5.37·17-s + 6.23·19-s + 5.61·23-s + 25-s − 0.762·29-s − 6.61·31-s − 4.34·35-s + 11.1·37-s − 9.02·41-s − 9.68·43-s + 5.22·47-s + 11.9·49-s + 10.6·53-s − 2.70·55-s + 1.73·59-s + 1.63·61-s + 6.26·65-s − 9.52·67-s + 14.3·71-s − 10.6·73-s + 11.7·77-s − 0.535·79-s + 0.146·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.64·7-s + 0.814·11-s − 1.73·13-s + 1.30·17-s + 1.43·19-s + 1.17·23-s + 0.200·25-s − 0.141·29-s − 1.18·31-s − 0.735·35-s + 1.83·37-s − 1.40·41-s − 1.47·43-s + 0.762·47-s + 1.70·49-s + 1.46·53-s − 0.364·55-s + 0.225·59-s + 0.209·61-s + 0.777·65-s − 1.16·67-s + 1.69·71-s − 1.24·73-s + 1.33·77-s − 0.0602·79-s + 0.0160·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.529641632\)
\(L(\frac12)\) \(\approx\) \(2.529641632\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 4.34T + 7T^{2} \)
11 \( 1 - 2.70T + 11T^{2} \)
13 \( 1 + 6.26T + 13T^{2} \)
17 \( 1 - 5.37T + 17T^{2} \)
19 \( 1 - 6.23T + 19T^{2} \)
23 \( 1 - 5.61T + 23T^{2} \)
29 \( 1 + 0.762T + 29T^{2} \)
31 \( 1 + 6.61T + 31T^{2} \)
37 \( 1 - 11.1T + 37T^{2} \)
41 \( 1 + 9.02T + 41T^{2} \)
43 \( 1 + 9.68T + 43T^{2} \)
47 \( 1 - 5.22T + 47T^{2} \)
53 \( 1 - 10.6T + 53T^{2} \)
59 \( 1 - 1.73T + 59T^{2} \)
61 \( 1 - 1.63T + 61T^{2} \)
67 \( 1 + 9.52T + 67T^{2} \)
71 \( 1 - 14.3T + 71T^{2} \)
73 \( 1 + 10.6T + 73T^{2} \)
79 \( 1 + 0.535T + 79T^{2} \)
83 \( 1 - 0.146T + 83T^{2} \)
89 \( 1 - 7.85T + 89T^{2} \)
97 \( 1 + 0.389T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85499251293508735868834875172, −7.39539809527383533148560127157, −6.94858545636073399421985010858, −5.55917499103403814837117706331, −5.16408713449294106429679578114, −4.55073464665465719991411251167, −3.63682327774320897440643295655, −2.77076629632220862226554664254, −1.69225860155923813715176337943, −0.887501263415251068237805751718, 0.887501263415251068237805751718, 1.69225860155923813715176337943, 2.77076629632220862226554664254, 3.63682327774320897440643295655, 4.55073464665465719991411251167, 5.16408713449294106429679578114, 5.55917499103403814837117706331, 6.94858545636073399421985010858, 7.39539809527383533148560127157, 7.85499251293508735868834875172

Graph of the $Z$-function along the critical line