L(s) = 1 | + (−0.237 − 0.137i)2-s + (0.611 + 2.28i)3-s + (−0.962 − 1.66i)4-s + (1.45 + 1.69i)5-s + (0.168 − 0.627i)6-s + (−0.193 − 0.334i)7-s + 1.07i·8-s + (−2.23 + 1.29i)9-s + (−0.112 − 0.604i)10-s + (−1.12 − 4.21i)11-s + (3.21 − 3.21i)12-s + (−1.35 − 3.34i)13-s + 0.106i·14-s + (−2.98 + 4.35i)15-s + (−1.77 + 3.07i)16-s + (1.90 + 0.510i)17-s + ⋯ |
L(s) = 1 | + (−0.168 − 0.0971i)2-s + (0.353 + 1.31i)3-s + (−0.481 − 0.833i)4-s + (0.650 + 0.759i)5-s + (0.0686 − 0.256i)6-s + (−0.0729 − 0.126i)7-s + 0.381i·8-s + (−0.745 + 0.430i)9-s + (−0.0356 − 0.191i)10-s + (−0.340 − 1.27i)11-s + (0.928 − 0.928i)12-s + (−0.376 − 0.926i)13-s + 0.0283i·14-s + (−0.771 + 1.12i)15-s + (−0.444 + 0.769i)16-s + (0.462 + 0.123i)17-s + ⋯ |
Λ(s)=(=(65s/2ΓC(s)L(s)(0.810−0.585i)Λ(2−s)
Λ(s)=(=(65s/2ΓC(s+1/2)L(s)(0.810−0.585i)Λ(1−s)
Degree: |
2 |
Conductor: |
65
= 5⋅13
|
Sign: |
0.810−0.585i
|
Analytic conductor: |
0.519027 |
Root analytic conductor: |
0.720435 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ65(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 65, ( :1/2), 0.810−0.585i)
|
Particular Values
L(1) |
≈ |
0.839230+0.271637i |
L(21) |
≈ |
0.839230+0.271637i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−1.45−1.69i)T |
| 13 | 1+(1.35+3.34i)T |
good | 2 | 1+(0.237+0.137i)T+(1+1.73i)T2 |
| 3 | 1+(−0.611−2.28i)T+(−2.59+1.5i)T2 |
| 7 | 1+(0.193+0.334i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.12+4.21i)T+(−9.52+5.5i)T2 |
| 17 | 1+(−1.90−0.510i)T+(14.7+8.5i)T2 |
| 19 | 1+(4.83+1.29i)T+(16.4+9.5i)T2 |
| 23 | 1+(−0.322+0.0863i)T+(19.9−11.5i)T2 |
| 29 | 1+(−7.07−4.08i)T+(14.5+25.1i)T2 |
| 31 | 1+(2.54+2.54i)T+31iT2 |
| 37 | 1+(2.41−4.17i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−4.49+1.20i)T+(35.5−20.5i)T2 |
| 43 | 1+(1.76−6.58i)T+(−37.2−21.5i)T2 |
| 47 | 1+9.83T+47T2 |
| 53 | 1+(7.17−7.17i)T−53iT2 |
| 59 | 1+(0.628−2.34i)T+(−51.0−29.5i)T2 |
| 61 | 1+(5.32+9.22i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.52−3.18i)T+(33.5+58.0i)T2 |
| 71 | 1+(1.12−4.20i)T+(−61.4−35.5i)T2 |
| 73 | 1+6.08iT−73T2 |
| 79 | 1+3.34iT−79T2 |
| 83 | 1−5.18T+83T2 |
| 89 | 1+(−4.82+1.29i)T+(77.0−44.5i)T2 |
| 97 | 1+(−12.7+7.37i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.87694819067677098245980512601, −14.27392724874111161675521391470, −13.17426820957693504419246506626, −10.89840996118797164530860440018, −10.43775148195440679880050966763, −9.559414067395748037187279116498, −8.419664621509037730896008883344, −6.16688214634064142278114116429, −4.95349862258932626229744721669, −3.15299074418077516487611253347,
2.13492692750337816935576321883, 4.62618839766855619027305836632, 6.63522658477628275099557837842, 7.73757990537169006112394637857, 8.750637658077539008738670875183, 9.856896343543824856809586617313, 12.21268463114154310224424941939, 12.54549455108943206584285977656, 13.46339935611751821274948283290, 14.39283924735611274553777720797