L(s) = 1 | + (−0.237 − 0.137i)2-s + (0.611 + 2.28i)3-s + (−0.962 − 1.66i)4-s + (1.45 + 1.69i)5-s + (0.168 − 0.627i)6-s + (−0.193 − 0.334i)7-s + 1.07i·8-s + (−2.23 + 1.29i)9-s + (−0.112 − 0.604i)10-s + (−1.12 − 4.21i)11-s + (3.21 − 3.21i)12-s + (−1.35 − 3.34i)13-s + 0.106i·14-s + (−2.98 + 4.35i)15-s + (−1.77 + 3.07i)16-s + (1.90 + 0.510i)17-s + ⋯ |
L(s) = 1 | + (−0.168 − 0.0971i)2-s + (0.353 + 1.31i)3-s + (−0.481 − 0.833i)4-s + (0.650 + 0.759i)5-s + (0.0686 − 0.256i)6-s + (−0.0729 − 0.126i)7-s + 0.381i·8-s + (−0.745 + 0.430i)9-s + (−0.0356 − 0.191i)10-s + (−0.340 − 1.27i)11-s + (0.928 − 0.928i)12-s + (−0.376 − 0.926i)13-s + 0.0283i·14-s + (−0.771 + 1.12i)15-s + (−0.444 + 0.769i)16-s + (0.462 + 0.123i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.810 - 0.585i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.810 - 0.585i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.839230 + 0.271637i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.839230 + 0.271637i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1.45 - 1.69i)T \) |
| 13 | \( 1 + (1.35 + 3.34i)T \) |
good | 2 | \( 1 + (0.237 + 0.137i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.611 - 2.28i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (0.193 + 0.334i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.12 + 4.21i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.90 - 0.510i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (4.83 + 1.29i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.322 + 0.0863i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-7.07 - 4.08i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.54 + 2.54i)T + 31iT^{2} \) |
| 37 | \( 1 + (2.41 - 4.17i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.49 + 1.20i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (1.76 - 6.58i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 9.83T + 47T^{2} \) |
| 53 | \( 1 + (7.17 - 7.17i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.628 - 2.34i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (5.32 + 9.22i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.52 - 3.18i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.12 - 4.20i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + 6.08iT - 73T^{2} \) |
| 79 | \( 1 + 3.34iT - 79T^{2} \) |
| 83 | \( 1 - 5.18T + 83T^{2} \) |
| 89 | \( 1 + (-4.82 + 1.29i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-12.7 + 7.37i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.87694819067677098245980512601, −14.27392724874111161675521391470, −13.17426820957693504419246506626, −10.89840996118797164530860440018, −10.43775148195440679880050966763, −9.559414067395748037187279116498, −8.419664621509037730896008883344, −6.16688214634064142278114116429, −4.95349862258932626229744721669, −3.15299074418077516487611253347,
2.13492692750337816935576321883, 4.62618839766855619027305836632, 6.63522658477628275099557837842, 7.73757990537169006112394637857, 8.750637658077539008738670875183, 9.856896343543824856809586617313, 12.21268463114154310224424941939, 12.54549455108943206584285977656, 13.46339935611751821274948283290, 14.39283924735611274553777720797