L(s) = 1 | − 2.75·2-s + 23.9·3-s − 24.4·4-s − 25·5-s − 66.0·6-s + 85.7·7-s + 155.·8-s + 331.·9-s + 68.9·10-s + 431.·11-s − 584.·12-s + 169·13-s − 236.·14-s − 599.·15-s + 352.·16-s − 438.·17-s − 912.·18-s + 1.61e3·19-s + 610.·20-s + 2.05e3·21-s − 1.18e3·22-s + 2.17e3·23-s + 3.72e3·24-s + 625·25-s − 465.·26-s + 2.11e3·27-s − 2.09e3·28-s + ⋯ |
L(s) = 1 | − 0.487·2-s + 1.53·3-s − 0.762·4-s − 0.447·5-s − 0.749·6-s + 0.661·7-s + 0.858·8-s + 1.36·9-s + 0.217·10-s + 1.07·11-s − 1.17·12-s + 0.277·13-s − 0.322·14-s − 0.687·15-s + 0.343·16-s − 0.368·17-s − 0.664·18-s + 1.02·19-s + 0.341·20-s + 1.01·21-s − 0.523·22-s + 0.856·23-s + 1.32·24-s + 0.200·25-s − 0.135·26-s + 0.557·27-s − 0.504·28-s + ⋯ |
Λ(s)=(=(65s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(65s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.013447731 |
L(21) |
≈ |
2.013447731 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+25T |
| 13 | 1−169T |
good | 2 | 1+2.75T+32T2 |
| 3 | 1−23.9T+243T2 |
| 7 | 1−85.7T+1.68e4T2 |
| 11 | 1−431.T+1.61e5T2 |
| 17 | 1+438.T+1.41e6T2 |
| 19 | 1−1.61e3T+2.47e6T2 |
| 23 | 1−2.17e3T+6.43e6T2 |
| 29 | 1−8.28e3T+2.05e7T2 |
| 31 | 1+2.74e3T+2.86e7T2 |
| 37 | 1+2.13e3T+6.93e7T2 |
| 41 | 1+1.95e4T+1.15e8T2 |
| 43 | 1−8.15e3T+1.47e8T2 |
| 47 | 1+1.32e4T+2.29e8T2 |
| 53 | 1−1.75e3T+4.18e8T2 |
| 59 | 1+1.97e3T+7.14e8T2 |
| 61 | 1−4.55e4T+8.44e8T2 |
| 67 | 1+1.94e4T+1.35e9T2 |
| 71 | 1+6.42e4T+1.80e9T2 |
| 73 | 1−1.02e3T+2.07e9T2 |
| 79 | 1+1.07e5T+3.07e9T2 |
| 83 | 1+4.64e4T+3.93e9T2 |
| 89 | 1+3.41e3T+5.58e9T2 |
| 97 | 1−1.33e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.10634898878246715999983386441, −13.14335344102083375388512153942, −11.61364087843365467244319298526, −10.02556916422162250388607798312, −8.895536632513856232301896720900, −8.394952105535746802981364620725, −7.21930438897657010688068794210, −4.64829563190216059202619554769, −3.39033522329111310498604656107, −1.34248783356685451830123653619,
1.34248783356685451830123653619, 3.39033522329111310498604656107, 4.64829563190216059202619554769, 7.21930438897657010688068794210, 8.394952105535746802981364620725, 8.895536632513856232301896720900, 10.02556916422162250388607798312, 11.61364087843365467244319298526, 13.14335344102083375388512153942, 14.10634898878246715999983386441