Properties

Label 2-65-1.1-c5-0-7
Degree $2$
Conductor $65$
Sign $1$
Analytic cond. $10.4249$
Root an. cond. $3.22876$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.75·2-s + 23.9·3-s − 24.4·4-s − 25·5-s − 66.0·6-s + 85.7·7-s + 155.·8-s + 331.·9-s + 68.9·10-s + 431.·11-s − 584.·12-s + 169·13-s − 236.·14-s − 599.·15-s + 352.·16-s − 438.·17-s − 912.·18-s + 1.61e3·19-s + 610.·20-s + 2.05e3·21-s − 1.18e3·22-s + 2.17e3·23-s + 3.72e3·24-s + 625·25-s − 465.·26-s + 2.11e3·27-s − 2.09e3·28-s + ⋯
L(s)  = 1  − 0.487·2-s + 1.53·3-s − 0.762·4-s − 0.447·5-s − 0.749·6-s + 0.661·7-s + 0.858·8-s + 1.36·9-s + 0.217·10-s + 1.07·11-s − 1.17·12-s + 0.277·13-s − 0.322·14-s − 0.687·15-s + 0.343·16-s − 0.368·17-s − 0.664·18-s + 1.02·19-s + 0.341·20-s + 1.01·21-s − 0.523·22-s + 0.856·23-s + 1.32·24-s + 0.200·25-s − 0.135·26-s + 0.557·27-s − 0.504·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(65\)    =    \(5 \cdot 13\)
Sign: $1$
Analytic conductor: \(10.4249\)
Root analytic conductor: \(3.22876\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 65,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.013447731\)
\(L(\frac12)\) \(\approx\) \(2.013447731\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
13 \( 1 - 169T \)
good2 \( 1 + 2.75T + 32T^{2} \)
3 \( 1 - 23.9T + 243T^{2} \)
7 \( 1 - 85.7T + 1.68e4T^{2} \)
11 \( 1 - 431.T + 1.61e5T^{2} \)
17 \( 1 + 438.T + 1.41e6T^{2} \)
19 \( 1 - 1.61e3T + 2.47e6T^{2} \)
23 \( 1 - 2.17e3T + 6.43e6T^{2} \)
29 \( 1 - 8.28e3T + 2.05e7T^{2} \)
31 \( 1 + 2.74e3T + 2.86e7T^{2} \)
37 \( 1 + 2.13e3T + 6.93e7T^{2} \)
41 \( 1 + 1.95e4T + 1.15e8T^{2} \)
43 \( 1 - 8.15e3T + 1.47e8T^{2} \)
47 \( 1 + 1.32e4T + 2.29e8T^{2} \)
53 \( 1 - 1.75e3T + 4.18e8T^{2} \)
59 \( 1 + 1.97e3T + 7.14e8T^{2} \)
61 \( 1 - 4.55e4T + 8.44e8T^{2} \)
67 \( 1 + 1.94e4T + 1.35e9T^{2} \)
71 \( 1 + 6.42e4T + 1.80e9T^{2} \)
73 \( 1 - 1.02e3T + 2.07e9T^{2} \)
79 \( 1 + 1.07e5T + 3.07e9T^{2} \)
83 \( 1 + 4.64e4T + 3.93e9T^{2} \)
89 \( 1 + 3.41e3T + 5.58e9T^{2} \)
97 \( 1 - 1.33e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.10634898878246715999983386441, −13.14335344102083375388512153942, −11.61364087843365467244319298526, −10.02556916422162250388607798312, −8.895536632513856232301896720900, −8.394952105535746802981364620725, −7.21930438897657010688068794210, −4.64829563190216059202619554769, −3.39033522329111310498604656107, −1.34248783356685451830123653619, 1.34248783356685451830123653619, 3.39033522329111310498604656107, 4.64829563190216059202619554769, 7.21930438897657010688068794210, 8.394952105535746802981364620725, 8.895536632513856232301896720900, 10.02556916422162250388607798312, 11.61364087843365467244319298526, 13.14335344102083375388512153942, 14.10634898878246715999983386441

Graph of the $Z$-function along the critical line